Experimental Facilities and Plan for a Prototype SFR

IAEA Technical Meeting on Existing and Proposed Experimental Facilities for Fast Neutron Systems

10-12 June 2013

Jinwook Chang
Outline

I STELLA

II Under Sodium Viewing

III Sodium-CO2 Interaction Test
I STELLA
National Plan for SFR Development

- 2017: Safety Analysis Report for Prototype SFR
- 2020: Design Approval
- 2028: Completion of Construction
STELLA Program

- STELLA (Sodium Integral Effect Test Loop for Safety Simulation and Assessment)
 - Phase 1: STELLA-1, Individual component test
 - Performance evaluation of key sodium components
 - Heat exchanger design codes V&V
 - Phase 2: STELLA-2, Integral effect test
 - Verification of dynamic plant response after reactor shutdown
 - Construction of test DB to support specific design approval for the prototype SFR

- Schedule

[Diagram showing the schedule with timelines and milestones for each phase.]
Scope of Experiment

- Reference design
 - Prototype Gen-IV SFR

- DHR performance
 - DHX
 - Straight-tube type sodium-to-sodium HX
 - AHX
 - Helical-tube type sodium-to-air HX
 - FHX
 - Fin-tube type sodium-to-air HX
 - DHR operation
 - Passive & Active DHRS
 - Natural circulation characteristics
Overall Characteristics of STELLA-1

- **Main test loop**
 - Test components
 - Sodium-to-sodium heat exchanger (DHX)
 - Sodium-to-air heat exchanger (AHX)
 - Mechanical sodium pump (PHTS pump)
 - Electrical loop heaters, EM pumps, Flow meters, Expansion tanks, Sodium storage tank

- **Sodium purification system**
 - Cold trap, Plugging meter, etc.

- **Auxiliary Systems**
 - Gas supply & Vacuum system
 - Power supply system
 - Fire protection system

- **Major Characteristics**

<table>
<thead>
<tr>
<th>Working fluid</th>
<th>Liquid sodium</th>
<th>Total electric power</th>
<th>2.5 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sodium inventory</td>
<td>~ 18 ton</td>
<td>Heat capacity of HXs</td>
<td>1.0MW</td>
</tr>
<tr>
<td>Design temperature</td>
<td>600°C</td>
<td>Design pressure</td>
<td>10 bar</td>
</tr>
<tr>
<td>Max. flowrate for HX test</td>
<td>10 kg/s</td>
<td>Max. flowrate for Pump test</td>
<td>125 kg/s</td>
</tr>
</tbody>
</table>

Overall Size (W × L × H): 15m × 8m × 22m
STELLA-1 Loop Constitution by tests

INDEX
- Cold Loop
- Hot Loop
- Pump Loop
- AHX Air Cooling Loop

Test matrix (schematic)
- AHX test (Forced-draft air)
- AHX test (Natural-draft air)
- DHX test
- DHX-AHX Natural Circulation Test
- Mechanical sodium pump test
STEELA-2 Facility Design

- **Integral effect test**
 - Verification of dynamic plant response after reactor shutdown

- **Top-tier requirements**
 - Preservation of overall system behavior in the prototype plant
 - Evaluation of important design issues
 - Reproducibility of major T-H phenomena accompanying natural circulation flow
 - Minimization of scaling distortion

- **Design requirements** (preliminary)
 - Scale (Height: 1/5, Volume: 1/125)
 - Identical working fluid and temperature conditions
 - Simulated electric power
 - 7% of the scaled nominal power
 - Use of the PIRT for simulating representative transients

Major characteristics (For example)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Scaling Ratio (Model/Prototype)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference reactor (Prototype)</td>
<td>PGSFR</td>
</tr>
<tr>
<td>Working fluid</td>
<td>Sodium</td>
</tr>
<tr>
<td>Sodium mass</td>
<td>~17 ton</td>
</tr>
<tr>
<td>Core power</td>
<td>1.9 MW</td>
</tr>
<tr>
<td>Reactor vessel height</td>
<td>~3.7 m</td>
</tr>
<tr>
<td>Reactor vessel diameter</td>
<td>~2.3 m</td>
</tr>
<tr>
<td>Temperature distribution</td>
<td>1:1</td>
</tr>
<tr>
<td>Operating pressure</td>
<td>1 bar</td>
</tr>
</tbody>
</table>

Key design parameters of the facility

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Scaling Ratio (Model/Prototype)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length Ratio</td>
<td>1/5</td>
</tr>
<tr>
<td>Area Ratio</td>
<td>1/25</td>
</tr>
<tr>
<td>Volume Ratio</td>
<td>1/125</td>
</tr>
<tr>
<td>Temperature Rise/Drop Ratio</td>
<td>1/1</td>
</tr>
<tr>
<td>Velocity Ratio</td>
<td>1/2.24</td>
</tr>
<tr>
<td>Time Ratio</td>
<td>1/2.24</td>
</tr>
<tr>
<td>Gravity Acceleration Ratio</td>
<td>1/1</td>
</tr>
<tr>
<td>Core Power Density Ratio</td>
<td>2.24</td>
</tr>
<tr>
<td>Power Ratio</td>
<td>1/55.9</td>
</tr>
<tr>
<td>Flow rate Ratio</td>
<td>1/55.9</td>
</tr>
<tr>
<td>Pressure Drop Ratio</td>
<td>1/5</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Option 1: Simulation of whole plant system

- **Whole Plant System Concept**
 - Including IHTS with L/D Scale Ratio of 1/1

- **Main Systems**
 - Reactor vessel & internals, 2 PHTS pumps, 4 IHXs
 - 2 IHTS Loop, 2 IHTS Pumps, 2 UHXs for simulating SGs
 - 4 DHXs, 2 AHXs, 2 FHXs, Expansion tanks

- **Electric core simulator**
 - Heater rods (assembly arrangement)
 - Preservation of the relative core ΔP

- **Auxiliary systems**
 - IHX gas (N_2) cooling system
 - Heat loss compensation system
 - Power supply system
 - Gas supply system
 - Fire protection system

- **Instrumentation / Control / Monitoring systems**
Option 2: Simulation of key safety system

System Constitution
- Main vessel w/o IHTS Loop and sodium Pumps
- Active and Passive DHRS (DHX coupled with AHX or FHX)
- Simulation of sodium pool inside main vessel using electric loop heaters (or rod heaters)
 - No restriction of the heater rods configuration
 - No core simulator
Discussions on the STELLA program

- Scope of experiment for licensing
 - Licensing requirements: Interactions with Regulatory body
 - Demonstration of Integral effects including decay heat removal performance
 - Whole system (option 1) vs. Key safety system (option 2)
 - Identification of major thermal-hydraulic phenomena and their priorities
 - Scope of Integral effect test facility design
 - Full-height scale vs. Reduced-height scale
 - Scaling ratio: Length, Volume, Aspect ratio, etc.
 - Similarity conditions between model and prototype
 ✓ Methods to minimize scaling distortion
Under Sodium Viewing
Feasibility test facility of prototype ultrasonic waveguide sensor module in water

- **Feasibility Test Facility**
 - 10 m long prototype ultrasonic waveguide sensor module
 - H-beam frame
 - Dimension: 13 m x 4 m x 6 m
 - Vertical installation of prototype WG sensor module
 - Ultrasonic C-scan system and Scanner
 - Development of C-scan software program
 - Using LabVIEW graphic language
 - Scanner control, image mapping and signal processing

- **Feasibility Test in Water**
 - C-scan resolution tests of 10 m prototype waveguide sensor module in water
 - Detection and identification of loose parts in reactor core mock-up
 - C-scan resolution: 0.8mm slit detected
Performance test facility of under-sodium ultrasonic waveguide sensor module in sodium

- **Performance Test Facility**
 - Design and construction of sodium test facility
 - Glove box system
 - Open-type sodium test tanks
 - Ar purification system

- **Under-Sodium Waveguide Sensor Module**
 - Under-sodium waveguide sensor coated with Be and Ni layers
 - Be coating for the effective radiation of ultrasonic beam in sodium
 - Ni coating for the improvement of sodium wetting

- **Basic Performance Tests in Sodium**
 - Ultrasonic wave propagation and sensitivity test
 - C-scan imaging resolution test
Plan for under-sodium viewing facility of under-sodium ultrasonic waveguide sensor

- Performance Verification and Comparison Tests
 - Performance enhancement of under-sodium ultrasonic waveguide sensor
 - Comparison tests of under-sodium waveguide sensors and immersion sensors

Under-Sodium Viewing Applications

Immersion Ultrasonic Array Sensor (JAEA) Rod Waveguide Sensor (ANL) Plate Waveguide Sensor (KAERI)
Sodium-CO2 Interaction Test
Mechanism of Na-CO₂ interaction

- Structure & Configuration of Na-CO₂ HX (PCHE)

- Modular-type PCHE unit

- Top-view

- Sodium inlet plenum

- Gas inlet plenum

- Gas exit plenum

- Sodium header

- Sodium inlet

- CO₂ gas in

- CO₂ gas out

- Sodium out

- CO₂ interaction

- Micro crack

- ~1 bar

- 200 bar
Potential design issues

- Damage propagation on the pressure boundary in Na-CO₂ HXs
 - thermal, mechanical and chemical effects on neighboring structures

- Potential channel plugging in Na-CO₂ HXs

- Slow loss of CO₂ inventory
 - Pre-determined leak rate (micro-crack)
 - $m_f^{CO₂} : 250 \sim 500 \text{cc/min} (\sim 1 \text{g/sec CO}_2)$
 - "Small leak" condition of SWR
 - Subsonic flow (controllable flow)
 - Major concerns
 - Leak hole (path) size & leak rate
 - Potential leak hole plugging by reaction product

Potential wastage scenario:

- Surface degradation
- Potential wastage scenario

Wastage test

Plugging test

Test Facility Overview

Progress Review
- Test program setup and Test facility design (2012~2013FY)
- Construction of experimental facilities (~2013FY)
- Main experiments & Assessment of Test results (~2014)

CO₂ upstream pressure in the gas tank and feeding tube
- Injection pressure : ~ 20 MPa (Realistic condition)

Sodium temperatures
- 300°C ~ 550°C at intervals of 50°C
- 600°C test for Auto-combustion condition

Sodium velocity
- 0.5 inch/sec (Inside test section around the target assembly)
- 5.0 lpm of liquid sodium flow

Injection nozzle size : 100 microns
- CO₂ leak rate : 1.6 ~ 1.7 liter/min (chocking condition)
- Test time : 30sec ~ 1min (CO₂ feeding only)

Target assembly
- Square plate (40 by 40 mm, 2mm thick.)
- Material : Mod.9Cr-1Mo steel / STS316 / Alloy800
- Distance : 1 mm (Reference design) & 5mm
- Impinging angle to the Horizon: 45° only

Primary assumption
- Slow loss of CO₂ inventory into flowing sodium

Sodium temperatures
- 300°C ~ 550°C at intervals of 50°C
- 600°C test for Auto-combustion condition

Sodium flow conditions
- Flowrate : 0.05 ~ 0.1 lpm
- Sodium channel velocity : 0.72 m/sec (nominal condition)

CO₂ flowrate
- 50scc/min, Pre-determined leak rate (micro-crack) by MFC

Injection nozzle size : 100 microns
- Test time : 30sec ~ 1min (CO₂ feeding only)

Test channel assembly
- Venturi type single sodium channel (Half-circular shape)
- Channel diameters (mm) : 2.0 (nominal), 3.0, 4.0, 5.0
- Channel length (m) : 1.0
3D drawings for the Test Facility

3D-view

Side-view

Front-view
Experiment Planning for Prototype SFR (1/2)

- Identify and list up experiments to perform
- Ranking by priority
- Detail planning

<table>
<thead>
<tr>
<th>Category</th>
<th>Experiment</th>
</tr>
</thead>
</table>
| Reactor Physics | Critical experiment for a U core
| | Critical experiment for a mixed U/TRU core
| | Critical experiment for a TRU core
| Thermal Hydraulics and Safety | Test for heat exchanger characteristics (DHX, AHX, FHX)
| | Heat transfer and flow characteristics test for SG
| | Sodium pump performance test (mechanical pump, EM pump)
| | Reactor thermal behavior characteristics test
| | Cold trap performance test
| | Integral effect test (STELLA-2)
| | Simulation test for primary pipe rupture
| | Source term evaluation test |
Experiment Planning for Prototype SFR (2/2)

<table>
<thead>
<tr>
<th>Category</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Structure and Main Component</td>
<td>Dynamic characteristics test for UIS
 Performance test for CRDM
 Performance test for IHX structure
 Performance test for ISI (USV and sensors)</td>
</tr>
<tr>
<td>Metal Fuel</td>
<td>Performance test for metal fuel slug
 Performance test for fuel rod and cladding
 Performance test for fuel assembly</td>
</tr>
<tr>
<td>MMIS</td>
<td>Performance test for digital MMIS safety system
 Safety communication structure and characteristics test
 Power control system characteristics test</td>
</tr>
</tbody>
</table>