Status of SFR Metal Fuel Development

2013. 3. 5

Chan Bock Lee, Byoung Oon Lee, Ki Hwan Kim and Sung Ho Kim
Content

- Introduction
- Status of SFR Metal Fuel Development
 - Fuel fabrication
 - Cladding development
 - Fuel performance evaluation
- Conclusion
Introduction

- Metal Fuel Recycling in Sodium-cooled Fast Reactor
 - Enhanced utilization of uranium resource
 - Efficient transmutation of minor actinides
 - Inherent passive reactor safety
 - Proliferation resistance with pyro-electrochemical fuel recycling

- To meet the goals of Generation IV SFR
 - Sustainability, Safety, Economy and Proliferation Resistance
Utilization of uranium resource can be enhanced by 100 times
Space for high level waste can be reduced by 1/100
Duration needed for radio toxicity decrease can be reduced by 1/1,000
High proliferation resistance by handling TRU together
SFR metal fuel targets and technical challenges

Fuel Performance Targets

<table>
<thead>
<tr>
<th></th>
<th>Gen-IV Target</th>
<th>Rational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Burnup (at.%)</td>
<td>≥20</td>
<td>High burnup</td>
</tr>
<tr>
<td>Peak Cladding Damage(dpa)</td>
<td>≥ 200</td>
<td>High burnup</td>
</tr>
<tr>
<td>Peak Cladding Temperature (°C)</td>
<td>≥ 650</td>
<td>High thermal efficiency</td>
</tr>
</tbody>
</table>

Technical Challenges

- Remote fabrication of metal fuel with radioactive minor actinides
 - Control of Am vaporization during metal fuel casting
 - Reliable remote fuel fabrication

- Advanced cladding for high burnup and high temperature
 - High strength FMS(ferritic martensitic steel), ODS(oxide dispersion steel)

- Verification of Irradiation performance of U-TRU-RE-Zr metal fuel
 - Effect of minor actinides and rare earths(RE) in fuel
 - High burnup performance
Fuel Slug Fabrication

Fuel slug gravity casting system
- Advanced fuel casting system to control evaporation of volatile americium during melting of U-TRU-RE-Zr fuel alloy with minor actinides
- The melt was poured downward into a graphite distributer where the quartz mold assembly were attached.

Casting process investigation
- Casting conditions
 • batch size, casting temp., casting pressure, heating rate, etc
- Casting components
 • Crucible, distributer, mold
- Coating materials and method in crucible
 • Y_2O_3, TiC, ZrC, HfC, etc
 • Plasma, slurry coating

Test rods of coating materials
melt dipping test of plasma coated Y_2O_3 in U-Zr melt
Fuel Slug Fabrication

- **Fuel slugs by gravity-casting**
 - Varying fuel composition: U-(5,10,15)Zr, U-10Zr-(2,4,6)RE, U-10Zr-5Mn, U-10Zr-RE-Mn
 - Dimensions: (5.0~10mm) Φ x 300mmL
 - Retention of volatile surrogate Mn: ~94% at 1 bar(Ar) casting pressure
 - Radiography: gamma and neutron

- **Characterization of fuel slugs**
 - Alloying composition
 - Density
 - Microstructure
 - Thermal properties
 - Mechanical properties

- **Microstructure of U-10Zr and U-10Zr-Ce fuel slugs**

- **Thermal conductivity**

- **Thermal expansion coefficient**
Injection Casting

- Injection casting of fuel slug
 - Vacuum injection casting of U-Zr and U-Pu-Zr is a proven technology with vast experience in US
 - The method to control evaporation of volatile elements during casting needs to be developed

- Establishment of small versatile injection casting equipment
 - Capacity: 1 kg/batch max. U alloy
 - Fabrication tests of surrogate (Cu) fuel slug
Particulate Fuel

- Fuel particle fabrication followed by vibro-compaction or consolidation of fuel particles

Advantages
- Casting Mold not needed
- Process loss reduction
- Fuel without Na bond (potential)

Fabrication of atomized powder
- U-10wt%Zr fuel particles were fabricated by atomization process
- Particle size: avg. 60µm and 300µm

Future work
- Consolidation of fuel particles
- Characterization and irradiation test

Centrifugal atomization
U-10wt% Zr powder
U-Zr compaction
Remote Fuel Fabrication

- Remote fabrication in Hot Cell
 - Accessibility, manipulation, maintenance and viewing
 - Reliability and practicality
 - Experience: DUPIC (: Direct Use of spent PWR fuel In CANDU reactors) fuel rod fabrication in hot cell

- Preliminary conceptual design of TRU fuel fabrication facility
 - Establishment of design criteria
 - Fuel fabrication equipments and facility

DUPIC fuel rod fabrication Operation simulation
Cladding material Development

- **Objective**
 - Development of high strength FMS(HT9M) cladding for high burn-up and high temperature application

- Creep rupture strength (650°C) improved by more than 35% from HT9

Strengthening mechanisms of FMS

- **Solid Solution Strengthening**
 - + Mo + W
 - + V + Nb
- **Precipitation Strengthening**
 - C, N, B
 - Ta

Alloy design for advanced cladding

Creep test (650°C)
Objective
- Development of cladding tube fabrication process

Status
- Fabrication of cladding tube
 • Fabrication of mother tube
 ✓ Melting (1 ton ingot)
 ✓ Fabrication of Hollow billet
 ✓ Hot extrusion and pilgering
 • Fabrication of cladding tube (HT9, Gr.92)
 ✓ Drawing and intermediate heat treatment
 ✓ Final heat treatment (1050°C, 760°C)
 ✓ Final dimension of cladding tube
 (OD 7.4mm, T 0.56mm, L 3,000mm)

Future work
 - Fabrication of cladding tube (HT9, HT9M) with optimized process
Evaluation of cladding tube

Objective
- Production of performance data

Status
- Setting of cladding test equipment
 • Tube creep/burst test machine
 • Cladding/sodium compatibility facility
- Evaluation of cladding tube
 • Tensile test (R.T. ~ 700°C)
 • Burst test (R.T. ~ 658°C)
 • Creep test (650°C)

Future work
- Fast neutron irradiation tests
 • creep, swelling, tensile, fracture toughness, microstructure, etc.
Study on Barrier between Fuel and Cladding

- **Barrier to prevent interaction between fuel and cladding**
 - Eutectic melting at high temperature
 - Degradation of cladding by rare earth fission products

- **Investigation of barriers**
 - Effective barrier material: Cr, V, Cr₂O₃..
 - Barrier fabrication methods: electroplating, oxidation, nitrification, metal liner..
 - Barrier on fuel slug: Surface oxidation of metal fuel slug
Irradiation Test of Metal Fuel in HANARO

- **Objectives**
 - Evaluation of metal fuel fabrication and design parameters
 - Evaluation of the effect of impurities to define the allowable levels
 - Evaluation of barrier performance

- **Status**
 - Irradiation capsule design and fabrication
 - 12 test fuel rods: U-10Zr and U-10Zr-5Ce
 - Electroplated Cr barrier (20μm)
 - Irradiation up to 3 at.% burnup (‘10.11~‘12.1)
 - Post-irradiation examination
 - γ-scanning
 - Fission gas release measurement
 - Fuel rod cutting and destructive tests

- **Future Work**
 - Transient simulation tests in hot cell
Metal fuel rod performance analysis code

- **PUMA**
 - Performance of Uranium Metal fuel rod Analysis code
 - Applicable only to metal fuel
 - Mechanistic models are employed

- **Code structure**
 - 1D FE-based thermal & mechanical modules
 - Thermal analysis is followed by mechanical analysis
 - Coupling between thermal and mechanical analyses
 - Models such as fission gas release and the fuel element redistribution were incorporated

- **Code verification and validation**
 - Comparison of code prediction with fuel performance test data and prediction of other code is underway.
SFR-Fuel-Pyroprocessing Milestone

'S11 '12 '16 '20 '21 '23 '24 '25 '27 '28 '30 '34 '39

- SFR Specific Design
 - STELLA-1('12)
 - STELLA-2('16)
- U-Zr Fuel Fabrication Tech.
 - UFMF D/C.
 - TFRF D/C
- Remote Fuel Fabrication Tech.
 - 1 Phase ('11-'12)
 - 2 Phase ('13-'16)
 - 3 Phase ('17-'20)
- Korea-US Joint Fuel Cycle Study (Pyro-electrochemical Recycling)
 - PRIDE Operation
 - DFDF/ACPF Operation
- Specific Design Approval('20)
- PSAR('20)
- FSAR('26)
- C/P('22)
- O/P('28)
- SFR (150 MWe) Operation
 - SFR Specific Design
 - STELLA-1('12)
 - STELLA-2('16)
- U-Zr Fuel
- Remote Fuel Fabrication Tech.
 - 1 Phase ('11-'12)
 - 2 Phase ('13-'16)
 - 3 Phase ('17-'20)
- Korea-US Joint Fuel Cycle Study (Pyro-electrochemical Recycling)
 - PRIDE Operation
 - DFDF/ACPF Operation
- Specific Design Approval('20)
- PSAR('20)
- FSAR('26)
- C/P('22)
- O/P('28)
- SFR (150 MWe) Operation
 - SFR Specific Design
 - STELLA-1('12)
 - STELLA-2('16)
- U-Zr Fuel
- Remote Fuel Fabrication Tech.
 - 1 Phase ('11-'12)
 - 2 Phase ('13-'16)
 - 3 Phase ('17-'20)
- Korea-US Joint Fuel Cycle Study (Pyro-electrochemical Recycling)
 - PRIDE Operation
 - DFDF/ACPF Operation
- Specific Design Approval('20)
- PSAR('20)
- FSAR('26)
- C/P('22)
- O/P('28)
- SFR (150 MWe) Operation
 - SFR Specific Design
 - STELLA-1('12)
 - STELLA-2('16)
- U-Zr Fuel
Conclusion

- Metal fuel recycling in SFR
 - Enhanced utilization of uranium resource
 - Efficient transmutation of minor actinides
 - Inherent passive reactor safety
 - Proliferation resistance with pyro-electrochemical fuel recycling

- Demonstration of technical feasibility of recycling TRU metal fuel by 2020
 - Remote fuel fabrication
 - Irradiation performance up to high burnup
Thank You
감사합니다
Nuclear Power Plants in Rep. of Korea

Sites and Units [MWe]

<table>
<thead>
<tr>
<th>Site</th>
<th>In Operation</th>
<th>Under Construction</th>
<th>Total (2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sin)Kori</td>
<td>5 (4,137)</td>
<td>3 (3,800)</td>
<td>8 (7,937)</td>
</tr>
<tr>
<td>(Sin)Wolsong</td>
<td>4 (2,779)</td>
<td>2 (2,000)</td>
<td>6 (4,779)</td>
</tr>
<tr>
<td>Yonggwang</td>
<td>6 (5,900)</td>
<td>-</td>
<td>6 (5,900)</td>
</tr>
<tr>
<td>Ulchin</td>
<td>6 (5,900)</td>
<td>2 (2,800)</td>
<td>8 (8,700)</td>
</tr>
<tr>
<td>Total</td>
<td>21 (18,716)</td>
<td>7 (8,600)</td>
<td>28 (27,316)</td>
</tr>
</tbody>
</table>

Plants Under Construction
- OPR1000: Shin-Kori (#2), Shin-Wolsung (#1,2)
- APR1400: Shin-Kori (#3,4), Shin-Ulchin (#1,2)

Radioactive Waste Disposal Facility (Under construction)

Power Generation Mix (%)
- Fossil Fuel: 66.9%
- Nuclear: 31.4%
- Hydro: 0.5%
- Etc: 1.3%

[Ref: www.kosis.kr(2010)]
SFR Metal Fuel Development Plan

- **U-Zr Metallic Fuel Fabrication Tech. Dev.**
 - Fuel Slug (U-Zr)
 - Fuel Rod (U-Zr)
 - Fuel Assembly (U-Zr)
 - Non-fuel Bearing Assembly
 - U-Zr Fuel Fab.
 - Cladding/U-Zr Fuel Irradiation
 - U-Zr Fuel (3 t-HM/yr)
 - Prototype SFR (150 MWe)

- **U-Zr Slug HANARO Irradiation**

- **Cladding Fabrication**
 - Performance Evaluation
 - Prototype Duct Perf. Eval.

 - ATR Irradiation
 - TRU Rod Fab. and Irradiation
 - Joint Fuel Cycle Study of Korea and US

- **Batch Loading**
 - LTR
 - LTA

- **TRU Fuel Fab. Facility**
 - KAPF
 - UFMF: U-Zr Fuel Manufacturing Facility
 - TFMF: TRU Fuel Manufacturing Facility
 - LTR: Lead Test Rod
 - LTA: Lead Test Assembly
 - 2 kg-TRU/y (20FA/y)
 - 297 kg-TRU/y (20FA/y)

- **Supply of U-Zr fuel as starting fuel of prototype SFR**
- **Transition to TRU fuel through demonstration of TRU LTA fuel**
SFR Metal Fuel

- Fuel material: U–Zr & U–TRU–Zr
- Active fuel length: 900 mm
- Fuel rod length: 3,700 mm
- Cladding & duct material: Ferritic/martensitic steel
- Cladding diameter & thickness: 7.4 mm & 0.6 mm
- Overall assembly length: 4,600 mm
Metal Fuel Fabrication Process

Pyroprocessing

Zr

Fuel Ingot (U+TRU+RE+others) → Fuel composition (U-TRU-Zr) → Fuel Slug Casting → Fuel Rod (Na insertion, End cap welding) → Fuel Assembly

Cladding

Fuel Assembly Components

Scrap Recycling

SFR
Continuous Casting

- Continuous casting has advantages in preventing the evaporation of volatile Am because inert over pressures can be easily applied.

- Waste can be reduced due to no use of casting molds (e.g., quartz), and product yields can be increased due to little heel left in the crucible after casting.

- Preliminary surrogate fuel (Cu) slugs were cast under inert atmospheric pressure of 760 torr. The surrogate fuel slug had diameter of about 7 mm and length of about 2.3m.
Schematic Flow of Cladding Tube Fabrication

Process Development

Off-gas Treatment
- FP gases

Declading/Voloxidation
- UO₂ + (TRU + FP) Oxide (Granule)

Oxide Reduction
- (U + TRU + FP) Metal

Salt Treatment
- Clean Salt

Electrowinning
- Used Salt (U + TRU + FP)

Salt Recycle/Immobilization
- Clean Salt

Salt Recycle/Immobilization

Uranium Recovery

Reuse/Storage

Sodium Cooled Fast Reactor

TRU Metal Fuel Fabrication

TRU : Transuranic elements
NM : Noble metal elements
FP : Fission products