DE LA RECHERCHE À L'INDUSTRIE

SCENARIOS FOR MINOR ACTINIDES TRANSMUTATION IN THE FRAME OF THE FRENCH ACT FOR WASTE MANAGEMENT

International Conference on Fast Reactors and related Fuel Cycles: Safe Technologies and Sustainable Scenarios

M. Meyer, C. Coquelet-Pascal, R. Girieud, M. Tiphine, R. Eschbach, C. Chabert, CEA C. Garzenne, P. Barbrault, B. Gannaz, EDF R&D

L. Van Den Durpel, D. Favet, M. Arslan, B. Carlier, M. Caron-Charles, J.C. Lefèvre, AREVA

MARCH 7th, 2013

www.cea.fr

Context and hypothesis	P.03
Optimization studies	P.06
Impact study: delay of SFR deployment to 2080	P.09
Impact study: sensibility to the SFR core design	P.11
Conclusion	P.13

Context & hypothesis

CONTEXT & CALCULATION SCHEME

The French Context

- French reactor fleet:
 - 58 PWR loaded mainly with UOX and MOX (about 1/3 of the fleet);
 - Pu from UOX is recycled once in MOX fuels.

Calculation Scheme

- Scenario calculations are performed with COSI6:
 - COSI6 simulates the evolution of a nuclear fleet and of its associated facilities over several decades (simulations are time-dependent);
 - it provides all the material fluxes at stake in the fuel cycle.
- **■** Evolution calculations are performed by coupling COSI with CESAR:
 - CESAR is used as <u>reference code at the AREVA La Hague reprocessing plant</u> to evaluate the spent fuel isotopic composition;
 - irradiation calculations are based on neutronic data provided by APOLLO2 (for thermal spectrum) and ERANOS (fast spectrum).
- COSI6 and CESAR are both developed by the CEA.

Context & hypothesis

REACTOR ASSUMPTIONS

SFR-V2B

CFV (Low Void Coefficient)

<u>Remark</u>: This is a CFV preliminary industrial version which is bigger (3600 MWth) than the one used in ASTRID (1500 MWth).

	SFR-V2B CFV		-V
	SFR-VZD	Fissile	Fertile
Thermal power (MW)	3600	3600	
Electrical power (MW)	1450	1450	
Net yield	40,3 %	40,3 %	
Load factor	81,8 %	81,8 %	
Mass (tihm)	74	51	37
Fuel management (EFPD)	5 x 410	5 x 400	
Initial Pu content	~16 %	~25 %	
Discharge BU (GWd/t)	98	120	23

Context & hypothesis

SCENARIO ASSUMPTIONS

Reference scenario

- 2020-2040: deployment of 40 GWe of generation III PWR (EPR).
- 2040-2050: deployment of 20 GWe of generation IV SFR.
 - Equilibrium state: 1/3 SFR, 2/3 EPR
- 2080-2110: deployment of 60 GWe of SFR.
 - Equilibrium state: 100% SFR

Constant energy production: 430 TWhe/year (produced by 60 GWe)

Scenarios assumptions

- Cooling time of spent fuel before being reprocessed: minimum 5 years.
- Fabrication time: 2 years.
- The reprocessing capacity adjusts itself on the fabrication needs. It remains constant over 30 to 40-year periods.

Optimization studies

MA TRANSMUTATION IN HOMOGENEOUS MODE

Optimization studies

MA TRANSMUTATION IN HOMOGENEOUS MODE

- Thanks to the optimization, the MA content in Pu+MA in spent fuels is reduced from 20,1% to 14,3%.
- This leads to a reduction of the MA content peak in fresh fuels from 3,9% to 2,5%.

Optimization studies

Am TRANSMUTATION IN HETEROGENEOUS MODE(1)

- For the **Am transmutation in heterogeneous mode**, using the previous reprocessing optimization makes possible to:
 - reduce the Am bearing blankets (AmBB) Am content from 20% to 10%;
 - **—** shorten the irradiation time from 10 cycles to 5 cycles.

AmBB loading frequency being multiplied by 2, Am mass in cycle is higher.

Reduction of Cm production in AmBB

→reduction of AmBB decay heat.

Impact studies

SFR-V2B DEPLOYMENT DELAYED TO 2080 1/2

Main hypothesis

- SFR introduction between 2080 and 2110.
- Pu is recycled in PWR MOX fuels until 2075.
- From 2080, MA are recycled in homogeneous mode is SFR.

To recover the largest Pu amount all fuels are reprocessed between 2078 and 2108.

SFR-V2B DEPLOYMENT DELAYED TO 2080 2/2

Main results

- From 2013 to the PWR fleet phase-out in 2100 **600 000 t of Unat** are required (140 000 t more than in the reference scenario).
- Due to the higher fraction of MOX fuel at reprocessing and the longer cooling time before reprocessing of spent fuels, the ²⁴¹Am content in spent fuels and fresh fuel is higher.
- In case of homogeneous transmutation, MA content in fresh fuel reaches 5% and MA mass in waste stabilizes at 126 t (twice the one in SFR deployment in 2040 scenario)

Impact studies

TRANSMUTATION IN CFV - HETEROGENEOUS MODE

Two rows of MABB containing 20% of MA and being irradiated during 10 cycles.

	SFR-V2B	CFV
Net MA production (kg/Twhe)	-1	-2,4

- The CFV transmutation rate is better than the SFR-V2B one, which leads to a 22% deviation on the MA global inventory in 2150.
- Increase of the Cm content in fresh MABB → increase in the MABB thermal power which almost reaches 10 kW/assembly in 2150.

Impact studies

TRANSMUTATION IN CFV – HOMOGENEOUS MODE

MA are put homogeneously in the CFV fissile core from the beginning of CFV deployment (2040).

	SFR-V2B	CFV
Fissile zone mass (t)	74	51

Due to the reduction of the fissile mass in CFV, the MA content in CFV is higher at the beginning of CFV deployment: MA content reaches 5,6%.

The optimization presented previously should reduce this value.

In this scenario, the SFR design has no impact on the MA inventory.

CONCLUSION

Different transmutation scenarios have been evaluated: homogeneous transmutation, AmBB, MABB.

Homogeneous transmutation

- The MA content peak at the beginning of the transmutation can be reduced from 3,9% to 2,5% thanks to a reprocessing optimization.
- Delaying the SFR deployment to 2080 increases this peak from 3,9% to 4,7%.

 Due to the constraints on reprocessing, the optimization may be less efficient in this case.

Heterogeneous transmutation

- Shorting the AmBB irradiation time from 10 cycles to 5 cycles and reducing their Am content from 20% to 10%:
 - reduces AmBB decay heat (-45% at the cooling beginning);
 - leads to an increase in the Am mass in cycle (+20% in 2150).

Impact of the CFV core

- In heterogeneous mode, the CFV transmutation rate being better than the SFR-V2B one, the MA inventory is reduced by 22% in 2150.
- In homogeneous mode, the reduction of the fissile mass in core leads to an increase of the MA peak at the beginning of the transmutation $(3,9\% \rightarrow 5,6\%)$. There's no impact on the MA inventory.

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | 13108 Saint Paul lez Durance T. +33 (0)4 42 25 31 30 | F. +33 (0)4 42 25 48 49

0.40

rection de l'Energie Nucléaire épartement d'Etude des Réacteurs ervice de Physique des Réacteurs et du Cyc

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

Pu INVENTORY EVOLUTION

SFR breeding gain increases when MA are transmuted: both SFR-V2B and CFV concepts goes from breakeven to breeders while transmuting MA.

