Grappling with a drift chamber - students at the recent Instrumentation School at the International Centre for Theoretical Physics (ICTP), Trieste, Italy. In the background (with hat) lurks ICTP Director Abdus Salam.

Prizewinners for Achievement in Accelerator Physics and Technology - Klaus Halbach (top) and Lars Thorndahl.

Student response was very positive, many of them suggesting that the course could be extended to four weeks so that there would be the chance to handle all four experiments (in two weeks only two setups could be covered).

Thanks to the ICTP support, the highly professional assistance from the local Trieste group, the enthusiasm of the instructors, and, last but not least, the motivation of the students, the school was a great success.

ACCELERATORS School prizes

Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses.

This year’s school was at Fermilab, with two weeks of university style courses at the end of July preceding two weeks of symposium style lectures at the beginning of August, during which the 1987 Prizes for Achievement in Accelerator Physics and Technology were awarded to Klaus Halbach of Berkeley and Lars Thorndahl of CERN.

Halbach was cited for ‘making high field permanent magnets practical tools for accelerator technology’. He has pioneered the use of modern permanent magnets in accelerators, and his work has had a major impact on synchrotron radiation and free electron laser projects throughout the world.

Thorndahl was cited for ‘essential theoretical and experimental contributions to the stochastic cooling of particle beams’. Stimulated by Simon van der Meer’s idea, Thorndahl initiated in 1971 the first test of stochastic cooling (increasing the beam density by

CERN Courier, October 1987
People and things

electronic means) at the CERN Intersecting Storage Rings (ISR), and has since been a driving force in the continual push for intense anti-proton beams.

(The Director of the US Particle Accelerator School is Mel Month, and the School can be contacted through Marilyn Paul at Fermilab, MS 125, Batavia, Illinois, 60510, USA.)

Yoichiro Nambu, left, receives one of the 1986 Dirac Medals of the International Centre for Theoretical Physics (ICTP) in Trieste from ICTP Director Abdus Salam (centre) and CERN Director General Herwig Schopper. Meanwhile Bruno Zumino of Berkeley and Bryce de Witt of Austin, Texas, have been selected for the 1987 awards (see above).

On people

One of the recipients of this year’s E.O. Lawrence Memorial Awards from the US Department of Energy is Miklos Gyulassy of Berkeley, recently a visitor in CERN’s Theory Division.

Dirac medals

The 1987 Dirac medals of the International Centre for Theoretical Physics (ICTP), Trieste, Italy, have been awarded to Bruno Zumino of Berkeley and Bryce de Witt of Austin, Texas.

For the past 25 years, Zumino has been a world leader in field theory. With Julius Wess, he made landmark contributions, including pioneer work in supersymmetry. With Stanley Deser, he constructed one of the first supergravity theories in four dimensions. He has also played an important role in the application of modern geometrical ideas.

De Witt has made fundamental contributions to the study of classical and quantum gravity and other gauge theories, and his work underlies much modern formalism. The Wheeler-de Witt equation provides an important starting point for quantum cosmology, while the Schwinger-de Witt expansion is widely used in studying new field theories.

Meetings

Advanced Study Institute on Techniques and Concepts of High Energy Physics, sponsored by the NATO Advanced Institutes Programme, US Department of Energy, US National Science Foundation, Fermi National Accelerator Laboratory and the University of Rochester, will be held from 14-25