




B.3. The KNS experiments

(a) Test N07 (b) Test N10

Figure B.18. Characteristic signals and development of boiling under natural convection
conditions in the KNS 37-pin bundle [Kai87]

During the tests, the pump and the heat exchanger were out of operation, the low heat input
being fully compensated by the heat losses from the loop. The throttle valves V1 and V2 (see
Fig. B.15a) were used to set increased flow resistances in the cold leg of the natural convection
loop. Except for the very first tests, the bypass valve V3 was closed.

Results of a first series, where only low void quality was obtained, were reported by Kaiser
et al. [Kai82]. Investigations of the effects of higher vapor quality were reported later [Kai84].
Eventually, the relevant experimental results were summarized by Kaiser and Huber [Kai87].

Figure B.18 illustrates results from two significant tests with boiling, N07 and N10, con-
ducted with an even power distribution over the cross-section. The pin power was set to 8
W/cm. It shows the temporal axial void distribution, the void meter signal at z=953 mm,
two coolant temperature signals, the pressure drop P519 across the throttle valves, and the
coolant inlet velocity. The experimental conditions, as well as the course of the boiling tests,
are detailed in [Kai87].

Loss-of-flow experiments

As mentioned in Chapter 4, loss-of-flow experiments performed in the 37-pin bundle in the KNS
sodium loop were used as basis for a benchmark exercise organized by the LMWBG in 1984.
The main results of the reference test, Test L22, were published by Huber et al. [Hub82b].
This test has already been presented and successfully used for the validation of the extended
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TRACE code (see Section 4.3).
Experimental data from tests performed at reduced power (Test L26) or slower flow run-

down (Test L29) have also been presented in Chapter 4. More detailed results are available in
[Hub82b]. Bottoni et al. [Bot90] reported test data from Test L60, characterized by a strong
power tilt (±25%) across the bundle cross-section, as also from Test L58, which simulated a
slow pump rundown for a power level reduced to around one-third of the nominal value and
with increased coolant inlet temperature.

B.4 Other experiments
In addition to the above mentioned experiments, a 19-pin bundle mockup was used in the CFNa
and CESAR loops at CEA-Grenoble to investigate steady-state boiling. The results have been
applied to perform analysis of slow transient-boiling instability [Sei84, Sei90]. The test section
consisted of a bundle with 60 cm heated length and 50 cm prolongation, and an outlet tube
of 2 cm internal diameter and 100 cm length. Experiments were performed for various power
levels (1, 2, 3, 5, 8, 10, 12 and 16 kW/pin).

A number of experiments were performed using 19 and 61-pin bundles in the THORS fa-
cility [Gna84] at the Oak Ridge National Laboratory (ORNL). Sodium temperatures as high
as 1010◦C were reached, and cladding temperatures went beyond the melting point of stainless
steel (1400◦C).

A large program of in-pile investigations of various accident types involving sodium boiling
phenomena was carried out at the CABRI and SCARABEE facilities at CEA-Cadarache [Nis86,
Bai80, Woo80]. Selected experiments from the CABRI loop have been successfully simulated
with the extended TRACE code coupled to the thermal-mechanics code FRED [Pon10].
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Appendix C
TRACE analysis of the latter part of
the Phenix Natural Convection test

As mentioned in Chapter 5, data from the latter part of the Phenix Natural Convection (NC)
test have been used to validate TRACE single-phase sodium flow modeling. The experimental
data have been shared by the CEA in the frame of a Coordinated Research Project (CRP),
initiated by the IAEA Technical Working Group on Fast Reactors (TWG-FR).

The Phenix reactor’s main characteristics and details of the NC test have been described
in Sections 5.1 and 5.2, respectively. This appendix first presents, in Section C.1, the TRACE
model of the Phenix primary circuit developed for the analysis. Steady-state calculations at
nominal (350 MWth) and reduced (120 MWth) power are compared to the experimental data
in Section C.2 for the validation of the model. Section C.3 presents the ‘blind’ comparison,
i.e. the comparison of the test results with those computed prior to the communication of the
experimental data, so-called ‘pre-test’ results. A summary of the analysis is given in Section C.4.

C.1 TRACE model of the Phenix primary circuit
For the analysis of the Natural Convection test, the entire primary circuit was modeled in
TRACE. The modeling of the intermediate circuit was limited to the heat exchangers (IHXs)
with appropriate boundary conditions on the inlet temperature, flow rate and outlet pressure.
The experimental power evolution was used as boundary condition.

Figure C.1 presents the nodalization scheme developed in TRACE to model the Phenix
reactor. Special attention has been focused on the accurate simulation of the component ele-
vation, the pool free surfaces and the heat-structure description. Various heat structures have
been used to represent:

• the wall between the hot and cold pool;

• the power evacuated through the roof;

• the power evacuated by the emergency cooling circuit (heat structure connected to the
vessel cooling system);

• the steel in the pump and diagrid.

Described below are the geometry and nodalization scheme for the core, the pools, the IHXs,
the pumps and the diagrid.
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Figure C.1. TRACE nodalization scheme of the Phenix reactor

C.1.1 The core

The Phenix core is composed of inner and outer fissile core regions surrounded by blanket
sub-assemblies (SAs) and a number of steel assemblies for reflection and shielding purposes.
Figure C.2 presents a scheme of the flow distribution in the different zones. A fraction of the
total flow (∼10%) is deviated to the lower part of the diagrid and used to cool the main vessel.

The TRACE model considers the following six regions: inner core (54 SAs), outer core (56
SAs), blanket (86 SAs), fuel stored in the core, control rods and steel reflector. The main design
characteristics have been presented in Chapter 5.

In order to reproduce the correct pressure drop in the core, a simplified model of the inner
vessel (diagrid, core and hot pool) was developed. The latter allowed one to adjust the gagging
of each core region in an independent way. For this purpose, each region was simulated with
the corresponding nominal conditions, the inlet temperature and flow rate being imposed by
a FILL. The hot pool was simulated with a free surface. A BREAK was used to simulate the
IHX flow discharge. Having the appropriate core outlet pressure imposed, together with the
corresponding flow rate and power, the friction coefficient could easily be adjusted to reproduce
the core pressure drop as specified by the CEA. This procedure was repeated for each core
region, taken separately, and thus enabled one to reproduce the correct core friction losses in
the complete model.
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C.1. TRACE model of the Phenix primary circuit
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Figure C.2. Distribution of the flow in the Phenix primary circuit

C.1.2 Hot and cold pools

The hot and cold pools are represented with a pipe connected to a BREAK component. The use
of side junctions allowed one to connect the different components at the correct elevation. The
outlet plenum has been simulated with side junctions (instead of the PLENUM component), as
recommended in the TRACE user manual. The hot pool is connected to the IHX in the middle
of cell 19, the elevation of which is +875 mm as per the pool nodalization and IHX first-cell
orientation (the connecting cell has to be horizontal to ensure that the perpendicular junction
is located in the middle of the source cell). The IHX outlet is connected in the middle of cell
11 of the cold pool (-3920 mm). The orientation of the pump and cold pool being identical (i.e.
vertical), the pump is connected via a side junction linked at the top of cell 8 of the cold pool
(-5297 mm). Furthermore, the vessel cooling component is linked at the top of cell 22 of the cold
pool (+1500 mm). The free surface in the latter has not been considered in the modelisation
and the component was directly linked to the cold pool.

In order to reproduce the correct levels, the free surfaces of both pools have been initialized
at 1783 mm, which corresponds to the specified level at 400◦C. The volume of the bottom cells
have been adjusted to obtain the sodium mass of 265 t and 536 t in the hot and cold pool,
respectively, the specification being assumed to be at 400◦C.

C.1.3 IHX and secondary circuit

The four intermediate heat exchangers (IHXs) have been simulated with two counter-current
pipes, a downflow pipe in the primary side and an upflow pipe in the intermediate circuit.
In order to represent the correct elevation, the primary side pipe was connected to the pools
via perpendicular junctions and horizontal cells. This ensured that the IHXs were effectively
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C. TRACE analysis of the latter part of the Phenix Natural Convection test

connected to the middle of the corresponding pool cells, as mentioned above. The hydraulic
diameter, which could not be calculated from the specified design characteristics, was adjusted
such as to allow one to reproduce the correct pressure losses between the hot and cold pools.
This could be done knowing the pool levels under nominal conditions.

Since the modeling of the intermediate circuit has been limited to the IHXs, appropriate
boundary conditions specified by the CEA have been used, viz. the inlet temperature and mass
flow rate evolutions presented in Chapter 5, Fig. 5.6.

C.1.4 Pump and diagrid

The three pumps have been simulated together, using a three-fold rated flow and keeping the
other rated characteristics at their nominal values. The built-in TRACE pump has been used,
yielding satisfactory results. The specified steel mass of 82.5 tonnes was accurately modeled,
but an assumption was made on the heat-exchange area since the latter has not been provided
by the CEA.

In the diagrid component, the total pump flow divides between the core (∼90%) and the
vessel cooling system (∼10%), as indicated in Fig. C.2. Since the geometry of the diagrid is
complex and not detailed in the CRP specifications, the area and friction losses have been
adjusted to reproduce the correct flow distribution. This was done using the specifications at
nominal power presented in the following section. The specified steel mass of 74.6 tonnes was
correcty modelled. The heat-exchange area was assumed to be ∼250 m2.

C.2 Steady-state results
Prior to the NC test, pre-test ‘blind’ calculations were performed. The different members par-
ticipating in the CRP agreed to perform the necessary model adjustments (due to limited design
specifications) on the basis of the nominal Phenix operating conditions, viz. corresponding to
350 MWth. The model has been used as such to simulate the Natural Convection test, starting
from the reduced power at 120 MWth.

This section presents the different adjustments, performed for 400◦C and 350 MWth, to-
gether with the comparison of TRACE steady-state results with the test data at both nominal
and reduced power.

C.2.1 Cold conditions: 400◦C
In order to ensure that the circuit elevations were accurately modeled, a simulation at zero-
power, zero-flow was performed at 400◦C (initialization temperature for all components). The
results showed that no flow was generated, and that the pool levels remained at the initial value
of 1783 mm. This demonstrated that the relative elevations of the different components were
correctly represented.

C.2.2 Nominal power: 350 MWth

The next step in the validation of the model has been performed for nominal operating condi-
tions, viz. at 350 MW, the pump rotational speed being set at 56.55 rad/s and the intermediate
inlet temperature and flow rate at 320◦C and 1380 kg/s, respectively.

At this stage, the losses in the diagrid were adjusted to reproduce the core and vessel cooling
flow rates. It has been seen that the area of the diagrid mainly influenced the total pump flow,
while the hydraulic diameter and friction factor in the lower part of the diagrid affected the
flow distribution between the core and the vessel cooling system. The latter was adjusted to
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C.2. Steady-state results

Table C.1. Comparison of TRACE-calculated results with the experimental data at 350
MWth

Mass flow (kg/s) Elevation (mm)

Core Inner Outer Blanket Stored CRs Reflector Hot Cold
core core fuel pool pool

Phenix 1988 861 779 226 46 14 62 2061 1325
TRACE 1988.1 849.1 779.8 236.3 46.7 14.0 62.3 2175 1460
∆ 0.1 -11.9 0.8 10.3 0.7 0.0 0.3 114 135
ε(%) 0.0 1.4 0.1 4.4 1.5 0.0 0.5 5.2 9.2

Temperature (◦C)
Inlet core Outlet core Inlet IHX1 Outlet IHX1 Inlet IHX2 Outlet IHX2

Phenix 385 525 525 385 320 525
TRACE 384 523 522 383 320 518
∆ -0.9 -1.7 -2.8 -1.6 0. -6.8
ε(%) 0.1 0.2 0.4 0.2 0. 0.9

correspond to about 10% of the core flow rate. Due to a lack of detail in the design specifications,
the diagrid area was adjusted to simulate the specified total flow with the specified pump head
and rated values.

The inlet plenum friction losses were adjusted in order to reproduce the correct hot pool
elevation, which is determined by the diagrid and core friction losses. Then, the IHX geometry
(mainly hydraulic diameter) was adjusted to reproduce the correct cold pool elevation. Table C.1
presents the comparison of the calculated flow distributions, pool elevations and temperatures
with the test data. It can be seen that the computed results agree very well with the experiment,
with less than 5% differences on the mass flow rates and 1% on the temperatures. The highest
discrepancies are seen on the values of the pool elevations, predicted with up to 13.5 cm absolute
error. Overall, the computed results satisfactorily reproduce the Phenix measurements.

C.2.3 Reduced power: 120 MWth

As mentioned previously, the NC test was initiated from a reactor steady-state corresponding
to the reduced power of 120 MWth. The model described formerly was used as such, changing
only the following boundary conditions: power of 120 MW, pump rotational speed of 36.6 rad/s,
secondary-side IHX inlet temperature of 308◦C and flow rate of 760 kg/s. Table C.2 gives the
main results corresponding to this steady-state. The comparison of TRACE-computed results
with the test data shows good agreement, thus demonstrating the validity of the model at an
operating point different from that used for the model adjustments.
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Table C.2. Comparison of TRACE-calculated results with the experimental data at 120
MWth

Mass flow (kg/s) Elevation (mm)

Core Inner Outer Blanket Stored CRs Reflector Hot Cold
core core fuel pool pool

Phenix 1284 1055 149 30 9 41 1876 1569
TRACE 1283.5 546.1 501.7 154.8 30.7 9.2 40.9 1922 1579
∆ -0.5 -7.0 5.8 0.7 0.2 -0.1 46 10
ε(%) 0.04 0.7 3.9 2.3 2.2 0.2 2.4 0.6

Temperature (◦C)
Inlet core Outlet core Inlet IHX1 Outlet IHX1 Inlet IHX2 Outlet IHX2

Phenix 358 432 432 360 308 432
TRACE 358 430 430 357 308 430
∆ -0.1 -1.4 -2.1 -2.8 0. -2.2
ε(%) 0.02 0.2 0.3 0.4 0. 0.3

C.3 Results of the NC test

The Natural Convection test was initiated by the dryout of two of the three steam generators
in the tertiary circuit, with constant speed of the primary and secondary pumps. The reactor
was manually shutdown after 458 s, when the difference between the primary and secondary
temperatures in the IHXs decreased to 15◦C. The three primary pumps were manually tripped
at 466 s, and their rotating speed decreased with mechanical inertia. The speed of the secondary
pumps was automatically reduced 60 s after the SCRAM and stabilized at 110 rpm. After about
1 hour (4080 s), back-up motors were used and the secondary pump speed reduced to 100 rpm.
About 3 hours after the beginning of the transient, the containments of the two operating SGs
were opened to allow air natural convection to occur. The test was terminated after 6h45min.

Table C.3 summarizes the main events characterizing the NC test. Three different steps
can be defined, delimited by (1) the reactor and pump trips and (2) the opening of the steam
generator (SG) containments.

The comparison of the TRACE pre-test results with the experimental data is presented
through Figs. C.3 to C.6.

Table C.3. Summary of the main events characterizing the Natural Convection test in the
Phenix reactor

Time Action

0 s 0 s Dryout of the steam generators
7min46s 458 s SCRAM
7min54s 466 s Primary and secondary pump trips
2h52min 10320 s Opening of the two SG containments
6h45min 24300 s End of the test
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C. TRACE analysis of the latter part of the Phenix Natural Convection test

The cooling deficiency created by the dryout of the steam generators (SGs) increased the
coolant inlet temperature by 40◦C and led to a reduction by 60% of the power in the Phenix
reactor (see Fig. C.3a). The various reactivity feedbacks in place have been studied using point
kinetics and coupled TRACE/PARCS models, as presented in Chapter 5.

Figure C.3 shows the evolution of the core temperatures calculated by TRACE and compared
to the experimental data. The experimental inlet core temperature is only displayed up to the
pump trip since this measurement is only relevant in forced convection (due to the position of
the sensor).

As seen in Table C.2, TRACE predictions at steady-state are very satisfactory.
At the beginning of the transient, the inlet pump and core temperatures increase. Fig-

ure C.3a shows that TRACE predicts a constant rise rate, which results in an overestimation
of the pump inlet temperature after ∼300 s since the experimental increase rate starts to slow
down at that time. This may be attributed to the formation of a convective flow in the lower
part of the cold pool, which would be initiated by the increasing temperature difference and
which would mix the cold sodium from the pool bottom with the hotter fluid coming from the
IHX. This is not represented with the TRACE 1D model but might be improved using a 3D
representation of the cold pool.

The predicted core inlet temperature follows the evolution of the pump inlet temperature
with a time delay due to the thermal inertia of the diagrid structure. The comparison with
the experiments, where the two temperatures stay very close (within ∼10◦C), indicates that
the pump and diagrid heat-transfer areas have been over-estimated in the present model and
should be reduced in a post-test analysis.

The experimental inner-core and average fissile-core outlet temperatures are available for
comparison with the calculated results. The sharp decrease in the reactor power only results
in a small decrease (∼ 10◦C) of the experimental core outlet temperature due to the increase
of the core inlet temperature and constant flow rate. It can be seen that TRACE predicts a
sharper drop – due to an under-estimation of the inlet core temperature caused by the diagrid
thermal inertia – succeeded by a slight increase, the rate of which is comparable to that of
the inlet core temperature. Thus, the predicted trends in the outlet core temperature can be
understood from the evolution of the core inlet temperature, and a better prediction of the
core inlet temperature should enable one to improve the calculated outlet temperature. It
should be recalled that the simplified core model presented in Chapter 5 showed that TRACE
satisfactorily predicted the outlet temperature when the experimental inlet core temperature
was used as boundary condition (see Fig. 5.18).

After the reactor and pump trips, TRACE satisfactorily predicts the sharp drop measured
in the core outlet temperature but largely over-predicts the following increase in temperature
caused by the reduction of the flow rate. A later study has shown that the simulation of the
core structures (mainly the SA wrappers) delayed the increase by 50 s, thus better reproducing
the shape of the experimental data. However, the amplitude predicted by TRACE remains
∼ 40◦C too high, and the accounting of the over-predicted inlet core temperature would only
explain ∼ 20◦C of the difference. The rest might be due to a change in either the flow rate or
power distribution between the fissile core and the other core regions that are not reproduced in
the model. Also, it should be mentioned that the temperature sensors are located 10 cm above
the top of the SAs. Previous Phenix tests have shown that the SA outlet core temperatures
are under-estimated by up to 30◦C during the first minutes of natural convection, due to a
chimney effect forming at the core outlet and the low coolant flow rate, especially during the
establishment of natural convection, when the sodium in the hot pool is colder than at the core
outlet. Therefore, one should be careful when comparing the test data with 1D-results, and a
3D representation of the hot pool could help to improve the computed results.
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Figure C.4. Evolution of the primary pool temperature during the NC transient.
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The long-term results for the core temperature evolutions are presented in Fig. C.3b. It
appears that the pump inlet temperature is over-estimated during the first two hours of the
transient. The differences between the computed pump and core inlet temperatures are related
to the pump and diagrid thermal inertia. The error on the pump inlet temperature seems to
pass on to the core outlet temperature, which is first largely over-estimated during the first
hour and then under-estimated by ∼ 15◦C after 3 hours and towards the end of the transient.

Additionally, Figure C.4 shows the evolution of the primary temperatures at the IHX inlet
and outlet, along with the experimental data. At the beginning of the transient, the computed
IHX outlet temperature is too low by 10 to 20◦C, but the prediction is still satisfactory when
one considers the high stratification of temperatures at the IHX outlet window – as much as
80◦C variation at nominal power. However, TRACE does not predict the temperature drop
measured at about 500 s, which coincides with the secondary flow rate reduction. After the
secondary pump trips, the primary outlet IHX sodium temperature drops down to that of the
secondary-side at the IHX inlet. This might come from the surrounding sodium in the cold
pool, which would cool down the sodium in the IHX by conduction after the loss of flow. In
the TRACE results, the primary outlet IHX temperature follows the evolution of the secondary
inlet IHX, which is used as boundary condition. An additional heat structure representing the
IHX outer shell and its immersion in the cold pool could enable one to better reproduce the
experimental results. However, the actual model gives quite satisfactory results beyond the first
hour after which, despite an under-estimation of the IHX outlet and core outlet temperatures
by ∼ 10◦C, the evolutionary trend of the primary temperatures is well reproduced.

The analysis of the core flow rate distribution, presented in Fig. C.5a shows that, after
the pump trip, a reverse flow is predicted in the coldest channels. This illustrates the earlier
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mentioned modification of the hydraulic path at the core outlet, through the formation of a
chimney effect in the hottest channels of the fissile core and a reverse flow in the lateral, cold
part of the core. A more detailed analysis revealed that the lower and colder part of the cold
pool slowly heats up. The resulting homogenization of the temperatures decreases the natural
convection flow rate after about the first hour, as can be seen in Fig. C.5b. The opening of
the steam generator containments (after ∼3 hours) enhances the cooling efficiency through air
circulation. This improves the cooling of the reactor vessel and results in further stratification
of the cold pool. The NC mass flow rate is thereby increased (see Fig. C.5b), and stabilizes at
about 5% of the initial flow rate.

Figure C.6 presents the calculated and measured pool levels. The prediction of the steady-
state is quite satisfactory, though over-estimated by almost 50 mm. After the pump trips, the
elevation difference between the hot and cold pools decreases sharply and even reverses. It is
seen that TRACE is able to predict the sharp drop, although this is of smaller amplitude, and
is not able to reproduce the corresponding inversion in pool elevation. The TRACE error on
the cold pool level is almost 20 cm. Still, the evolutionary trend of the difference in elevation
is quite well reproduced. The discrepancies with respect to the measurements might be due to
differences in the computed temperatures as function of pool height, which result in errors in
the sodium density. The pool levels thus represent a good practical measure for checking the
average pool temperatures in a post-test calculation.

Table C.4 summarizes the transient phenomenology during the different phases of the test.
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C.4. Summary of the analysis

C.4 Summary of the analysis
A complete model of the Phenix primary circuit has been developed in TRACE and validated
initially on the basis of steady-state results at nominal and reduced power. From the comparison
of the blind TRACE calculation with the experimental data obtained during the NC test, it
appears that the biggest discrepancies in the temperature evolutions are seen at the beginning of
the transient. TRACE predictions are very satisfactory after the first two hours of the transient,
with less than 10◦C under-prediction of the primary pool temperatures.

The major sources of error during the early transient seem to be related to the simulation
of the reactor structures. A finer modeling, including the core SA wrappers and the description
of the IHX as integrated into the reactor pools, has been performed in a post-test analysis. The
results, a selection of which is briefly presented in Fig. C.7, show the following improvements
on:

• the core inlet temperature, through the reduction of the pump and diagrid heat-tranfer
area, thus decreasing the corresponding thermal inertia;

• the core outlet temperature, due to the improved core inlet temperature and the better
representation of the core structures (mainly SA wrappers), which enabled one to improve
the results during the 200 s following the SCRAM;

• the IHX outlet temperature, through the representation of the IHX outer shell and its
integration into the cold pool, which results in a global improvement of the temperatures;

• the evolutions of the pool levels which, despite the remaining error on the predicted
absolute levels, are now very well reproduced (see Fig.C.7b).
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Figure C.7. Results of the NC test post-test analysis

In summary, the analysis has demonstrated the need to accurately simulate the reactor
structures, since these define the thermal inertia of the system during the first phase of the
transient. Furthermore, it has been found difficult to compare the computed 1D-results with
the test data due to the high-temperature stratification occurring in the pools. Nevertheless,
the simulated reactor behavior and temperatures match very well with the experimental data
after the first two hours and, in general, the TRACE blind predictions may be considered as
having been quite satisfactory.
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C. TRACE analysis of the latter part of the Phenix Natural Convection test

This first-of-its-kind benchmark, which has enabled one to compare results from the TRACE
code with experimental data from a sodium-cooled fast reactor, constitutes an important step
towards further validation of the sodium single-phase flow modeling in TRACE.
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ṁ mass flow rate kg/s

N number of neutrons available after breeding -

N number of test points -

Nu Nusselt number -

P perimeter m

P pressure Pa
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S neutron source term n/cm3·s
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-

T average temperature K

t time s

TB coolant bulk temperature K

Tw wall temperature K

v velocity m/s
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z elevation m
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α(E) capture-to-fission ratio
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-

β delayed neutron fraction -
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List of abbreviations and symbols

ε relative plugging or grid solidity
(
Av
As
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-

ε absolute error bar
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λ delayed neutron decay constant s−1

µ dynamic viscosity Pa·s

ν kinematic viscosity m2/s
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Φ two-phase multiplication factor for local pressure loss -

φ neutron flux n/cm2·s
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ρ density kg/m3

ρ reactivity pcm (10−5)

Σ macroscopic cross-section cm−1

σ microscopic cross-section cm2
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θ angle of the flow direction with the vertical rad
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ψ intermittency factor
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C coolant

c capture
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List of abbreviations and symbols

EC external characteristic

eff effective

f fuel

f fission

g gas

g group

i interfacial

IC internal characteristic

in inlet

L laminar flow

l liquid

m medium

out outlet

r rod

rad radial

s saturation

SPV single-phase vapor

T turbulent flow

Tt transition flow

v vapor

v vessel

w wall

Superscripts

c calculated

m measured
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