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ABSTRACT 

 
The well known two energy groups core reactor design model is revisited. A simple and friendly Maple module 

was built to cover the steps calculations of a plate reactor in five situations: 1. one group bare reactor, 2. two 

groups bare reactor, 3. one group reflected reactor, 4. 1-1/2 groups reflected reactor and 5. two groups reflected 

reactor. The results show the convergent path of critical size, as it should be. 

 

 

1. INTRODUCTION 

 

Neutrons from fission have very high speeds and must be slowed mainly by moderator like, 

for example, water or graphite, to maintain the chain reaction. This process is hard to be 

described accurately. In order to solve the neutron diffusion equation, the energy range is 

divided in several groups with particular features. This is the standard procedure.  

 

There are several complications. For example, not all neutrons are created with the same 

energy and they do not lose the same amount of energy. So, the moderation is not continuous 

and they can jump to distant energy group.  

 

One group calculations cannot represent that complex process and is very limited and 

restricted to academic works, although it can be employed as a starting point for a real 

project. The two groups approach has the advantage of being able to describe the neutron 

moderation, albeit in a limited way [1-5]. 

 

Looking for that way, it is interesting to follow the evolution of a critical reactor size, as an 

example, with several calculation methods. 
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The Maple module here presented enables rapid solution and graphical visualization of a 

certain restricted class of bare and reflected homogeneous reactor problems, within 

reasonable limits of accuracy. 

 

This paper has the following structure: Section II refers to one and two groups basic 

equations definition; Section III solves that equations for bare and reflected one dimensional 

reactor core; Section IV analyzes the different critical size and Section V close this paper with 

some final remarks and conclusion. 

 

2. DEVELOPMENT 

 

We split this section in two subsections. The first is devoted to one energy group details. The 

second refers to the two energy groups in general form.  

2.1. One Group 

 

The one group approach is the simplest way for reactor calculation. Usually, its result is used 

as a first guess for the project. For a multi region reactor the j-region equation can be written 

as: 
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The terms are: 

   is the diffusion coefficient; 

  
 
 is the absorption macroscopic cross section; 

   
 
 is the mean neutron emitted by fission times the fission macroscopic cross section; 

     is the effective multiplication factor and  

   is the neutron flux solution. 

 

For a bare reactor core we have only one equation and two constants. One constant will be 

selected with the appropriate symmetry conditions and the other by power normalization. 

 

For a reflected core we have four constants, two for the core and two for the reflector. 

Interface conditions for the flux and current and boundary conditions will set three constants. 

The last constant will be set by power normalization. 

 

2.2. Two Group 

 

A more elaborate model can be achieved by the two group model. One has two equations for 

each j-region. For a reflected reactor we have four equations, two for the core region: 
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and two for the reflector: 
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  (5) 

 

Equations (2)-(5) describe a homogeneous reactor. This can be arranged as operator notation: 

 

              
 

with             , where   is the     identity matrix,    is the     matrix with with 

the cross section parameters as elements, defined as: 

 

   
 

 

  

    
    

 
    

 

  
 

                            
 

 

  

    
    

 

  
 

 

 

   
 

 

  

    
    

 
     

 

  
 

                      
 

 

  

    
    

 
    

 

  
 

   

 

The   index runs from   to the core and   to the reflector. The       is the  -region, core or 

reflector, two components column vector (for example: fast and thermal flux for a 

conventional thermal reactor).   

 

The  -region and   energy group macroscopic cross-section constants are: 

 

  
 
- diffusion coefficient; 

   
 

 - removal cross section; 

    
 

 - mean fission emitted neutrons times fission cross section; 

   - fission spectrum; 

    
 

 - transfer    ; 

     - effective multiplication factor. 

 

A glance over the equations shows that there are four solutions for each region. Therefore, we 

have four constants for the core and four constants for the reflector, a total of eight constants 

to be determined. As in the past case, the last constant can be set by power normalization. 

 

 

3. SOLUTION FOR EACH MODEL AND THE MAPLE INTERFACE 

 

In this section one discusses the results of each model and, at the end one makes a discussion 

about its performance. First of all, one presents the tables 1 and 2 with all representative 

constants by region.  
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Table 1:  Thermal Reactor Core Group Constants [2] 

 

 
One Group Two Group 

 1 2 
    0.02664 0.00847 0.18514 
   0.02327  0.02619 0.121 
   0.02327 0.01207 0.121 
  1.16928 1.2627 0.3543 
  1.0 1.0 0.0 

 

 

Table 2:  Refletor Group Constants [2] 

 

 
One Group Two Group 

 1 2 
   0.01388 0.0494 0.0197 
   0.01388 0.0004 0.0197 
  0.44629 1.13 0.16 

 

 

3.1. Bare Reactor - One and Two Group Model 

 

One group bare reactor is the simplest calculation. The equation (2.1.1) gives the criticality 

equation: 

 

     
   

      
 (3.1.1) 

 

where    is called geometric buckling. This simple equation is suitable for a Maple 

representation. Figure 1 shows the opening page. 

 

 
 

Figure 1:  Maple Reactor Calculation file opening page. 

 



INAC 2015, São Paulo, SP, Brazil. 

 

The Figure 2 shows the Maple calculation resources for one group bare reactor. In pressing 

the buttons the user can change the curve color. Changing the value of Meter the user can 

vary the reactor leakage or absorption and the plot is automatically updated. 

 

 
 

Figure 2: One group bare reactor plot. The Meter changes absorption. 

 

One clearly sees that the first calculation estimates a critical size of 60 cm. We will see that 

this value will change as the calculations are more sophisticated, such as when adding a 

reflector. 

 

We now proceed with our two group analysis, assuming the validity of a one-group 

description of the moderation process theory and diffusion theory for the thermal neutron. 

 

Figure 3 shows the two group calculation for a bare reactor. In an unreflected reactor core, the 

thermal to fast flux ratio is a constant. 

 

 
 

Figure 3: Two group bare reactor plot. The Meter changes Thermal and Fast 

absorption. 

 

3.2. Reflected Reactor - One and Two Group Model 

 

The addition of a reflector establishes a boundary between the simplified calculation of bare 

reactor and reflected reactor complex calculation, even in one energy group. For that task, the 

third modulus does that. Figure 4 shows the effect of a reflector when its dimension is 

changed. The saturation occurs no matter how additional reflector is added. For this particular 

case, 20 cm can be considered an infinite reflector. 
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Figure 4: One group plot. The Meter changes the reflector absorption. 

 

 

3.3. Reflected Reactor – 1-1/2 Group Model 

 

For the two group reflected reactor model the calculations start to become exhaustive and 

tedious. However, some simplification, without much loss of accuracy, can be done if we note 

that, for this reactor, the thermal diffusion coefficient is much smaller than the fast diffusion 

coefficient. This model is called 1-1/2 Group. It allows quick results. The thermal leakage of 

the core and reflector are neglected. The price you pay is the loss of flux continuity on 

regions interface. Figure 5 shows the fourth calculation modulus getting a more accurate 

critical reactor core size. 

 

               
 

(a)                                                                             (b) 

 
 

(c) 
 

Figure 5:  1-1/2 Group Model (a) Thermal flux, (b) Fast flux and  

(c) Thermal and Fast. 
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3.4. Reflected Reactor – Two Group Model 

 

Finally, we have the complete calculation of two group reflected reactor. It involves an order 

four determinant and it becomes almost impossible on hand calculation. The fifth modulus 

was developed to get the final most accurate result. Figures 6(a) and 6(b) show each 

individual flux and Figure 6-(c) shows the details of the relative size of thermal and fast 

fluxes. 

 

 

  
 

(a)                                                                             (b) 

 

 

 
 

(c) 

 

Figure 6:  The more realistic Two Group Model (a) Thermal flux,  

(b) Fast flux and (c) Thermal and Fast. 

 

 

 

3. CONCLUSIONS  

 

In Reactor Physics, calculations can become extremely tedious and time consuming. This 

graphical interface, built on the Maple platform, enables quick and safe viewing of several 

integrated results. For an user taking the first steps in reactor physics, this worksheet can be a 

valuable resource. Providing the correct cross section data of each medium, all parameters of 

interest will be provided clearly and concisely. Furthermore, using the buttons, some 

variables may be readily varied. The changes can be seen immediately on the plot window on 
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the side. More calculations are being added to account for more important details. Finally, the 

authors wish it to be shared with multiple users. 
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