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Summary : 

.. ~ ~ . / 

Exact expressions forthe amplitudes forscatterlngof a partlcle by a complex nucleus 
are wrltten down. It is then shown that, with a. particular weight function, the scatterlng 
amplitude can be averaged over'energy by goingto a complex energy, l. e., S (E),, = S(E + il), 
where I is the interval averaged over. 

The average amplitude is then expressed in terms of a pertnrbation expansion. In 
perturbation theory of tlie first kind, expansion ln powers of the nucleus le carrled out. In 
the second kind of perturbation theory, all particles are treated symmetrlcally and all but 
the average effects of the Interactions are treated as perturbations. This allows one to re
late the parameters of the optical potential back to nucleon-nucleon forces. 

It ls shown that these expansions are, in general, convergent, due to the fact that the 
excitation lnto whlch a gi ven excitation decays bas a longer life-time than the original one. 
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Perturbation Theory in Nuclear Reactions 

G. E. BnowK, * 

lnstitute for Theoretical Physics, University of Copenhagen, Copenhagen, Denmark 

C. T. D1~ ÜOMINICIS, 

Centre d'Etudes Nucléaires de Saclay, Saclay, France 

AND 

J. S. LANGERt 

Mathernatical Physics Department, University of Birmingham, Birmingham, England 

Exact expressions for the amplitudes for scattering of a particle by a complex 
nucleus are written down. It is then shown that, with a particular weight func
tion, the scattering amplitude can be averaged over energy by going to a com
plex energy, i.e., [S(E)]Av = S(E + il), where I is the interval averaged over. 

The average amplitude is then expressed in terms of a perturbation ex
pansion. In perturbation theory of the first kind, expansion in powers of the 
interaction potential between the incident particle and the particles in the 
nucleus is carried out. In the second kind of perturbation theory, ail particles 
are treated symmetrically and ail but the average effects of the interactions are 
treated as perturbations. This allows one to relate the parameters of the optical 
potential back to nucleon-nucleon forces. 

It is shown that these expansions are, in general, convergent, due to the 
fact that the excitation into which a given excitation decays has a longer lifc
time than the original one. 

I. INTRODUCTION 

In the past ten years a number of phenomena have been observed which 
appear to have no natural explanation in the statistical theory of nuclear reac
tions. Among these are the giant resonances in average cross sections for the 
scattering of neutrons from complex nuclei, the so-called direct interaction in 
inelastic scattering, giving rise to a relatively large number of fast particles, and 

* On leave from the University of Birmingham, Birmingham, England. 
t Now at Carnegie Institue of Technology, Pittsburgh, Pennsylvania. 
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the giant dipole photoeffect. It has been shown in several papers (1-5), in which 
nuclear dispersion theory has been employed, that these phenomena result from 
phase relations between the levels of the compound nucleus. That is, the many 
levels do not scatter independently, as assumed in the statistical theory, hut their 
amplitudes combine to give an average amplitude which is responsible for the 
above processes. The "statistical" processes are also included in the treatment, 
in the part of the scattering amplitude in which phase relations are not impor
tant. The physical interpretation of the theory for elastic scattering is just that 
of Feshbach et al. ( 6). 

In this paper we shall make the connection of the optical model parameters 
and transition amplitudes in direct interaction back to nucleon-nucleon forces. 
The essential point is that the average, rather than the actual amplitude is 
mainly responsible for the above processes, and the larger the energy region over 
which the average is taken, the less stringent are the criteria for the satisfaction 
of perturbation theory. 

In Section II we formulate the problem in dispersion theory. In Section III 
we justify a picture developed by Lane et al. (7) which is necessary for our con
siderations in Section IV and Section V of the criteria for validity of perturba
tion theory. In Section VI we discuss the relation of our results to those of other 
workers, especially those of Brueckner, et al. (8) and Brueckner (9). 

II. DEVELOPMENT 

W e wish. to describe the elastic scattering of a single particle, the coordinate 
of which we denote by r, by the initial nucleus of A particles, the totality of 
coordinates of which we denote by ~- For r < R, the A + 1 particles can be de
scribed by the complete set of compound states <I>Cp)(r, ~), where 

H<I>Cp)(r, ~) = Wp<I><P\r, ~), 

H = Ht + T(r) + V(r, ~). 
(1) 

Here Ht is the Hamiltonian of the A particles, V(r, ~) is the potential interaction 
between these A particles and the incident particle, and T(r) is the kinetic energy 
of the latter. The WP are the complex eigenvalues of the Kapur-Peierls formal
ism (10), 

w = f - ÙXp 
p p 2 (1.1) 

with tp and ap real. As in Ref. 1, we will find it convenient to introduce single
particle eigenfunctions -$m(r) in a complex well V(r) which will later be con
nected with the optical potential of Feshbach et al. ( 6). For the moment we will 
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consider V(r) to be a square well, V = - U - iW for r < R; the generalization 
to the case in which it varies with r is easy. We have 

{ 'l'(r) + V(r) )fm(r) = Emfm(r), 

where 'l' represents the kinetic energy and 

Em = Em - iW 

(2) 

(2.1) 

The functiom; q,<vl and fm are discussed in dctail if Ref. 1; the above definitio11s 
are given here to make this treatment rear,;onably self-contained. 

Introduci11g a complete set of states xl{) for the A particles, we can expaud 

We make the approximations: (1) We neglect the weak dependence of fmi on 
j which arises because V(r) will turn out to be a function of the excited state j. 
(2) We do not antisymmetrize between the r-particle and the ~-particles, for the 
moment. Whereas the identity of this last particle is certainly important iu 
determining the numerical value of V [see, for example, the correction to the 
single-particle energy noted by Hugenholtz and Van Hove (11)], it does not 
seem necessary for understanding the questions we deal with here. The question 
of antisymmetrization will be brought up in Section V. We will further assume 
that V(r, {) is a well-behaved potential (i.e., a potential without a strong repul
sive core and other singularities), although generalization to the case that it is 
not can probably be made using techniques developed by Watson and Brueck
ner. 

The difference See between the actual scattering amplitude and that in the 
complex single-particle well is the amplitude for the so-called compound elastic 
scattering. It is given by 

C -2ikR {~ "/p ~ I' m l 
= 2 7 Wv - E - ~ Em - Ef' 

(4) 

where a is a label for ail channel variables. Further, 

ldi2 1:,2 ~ p p A ( ) A (R) 
"/p = M L LJ, a0m a0m, c/>m R c/>m' , 

m,m 
(4.1) 

r m = 't,.2 R2[<ï6m(R)] 2 (4.2) 

where <;6m is the radial part of ,$ m and it is understood that both widths 'Yv and 
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r m are for the channel a; we will not bother to carry this suffix. For low bom
barding energies, 'Y P and r m are nearly real and r m ,.._., f3m , the "natural width". 

It is convenient to express sce in terms of the Green's fonction as has been 
clone by Bloch (12). U sing the notation 

we have 

cp(p\r, ~) = 1 p) = (p 1, 

fm(r)xiC~) = 1 jm) = (jm 1, 

S/e = ~: R 2e-zikR ~- {<P J Om) (p I üm') \PI H ~ E I p) 

- ( Om \ H ~ E \ 0m')} <Î>m(R)<f>m•(R) 

= kfi2 Rz -2ikR " {lo 1 1 \ 0 ,\ 
2M e f;::., \ m H - E m / 

- \ Om ln ~ E I Om') }<Î>m(R)<f>m,(R). 

Using the identity 

1 
H-E 

we obtain 

1 

1Î - E 
] • 1 

1Î _ E (V - V) 1Î 

1 • 1 • 1 
+ 1Î - E (V - V) H - E (V - V) 1Î - E, 

S ce _ 
" - - kfi2 R2e-2ikR L 1 ' 1 {<om IV - VI Om') 

2M m,m' Em - E Em' - E 

- (Om 1 (V - V) H ~ E (V - V) 1 Om')} <Î>m(R)<f>m•(R). 

(5) 

(6) 

(6.1) 

(7) 

Using Eq. (19) of Ref. 1 we could easily carry out the sums to obtain the basic 
Eq. (14.2) of Ref. 1, 

Sa'e = - 2: {<oalV - Vlüa) - (OaJ(V - V) H ~ E(V - V)lüa)},(7.1) 

where I a) is the scattering state which is asymptotic to the initial wave plus 
an outgoing wave in channel a. 

We will define V(r) by requiring that (S,.)Av = S,., where (S,.)Av is the scat-
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tering amplitude averaged with 1-m,;pect to the energy. 1 With this definition, Sa 
is just the "shape-elastic" scattering of Feshbach et al. W e will discuss in detail 
later just how this average should be carried out. Our requirement is, then, 
that (S,/c)Av be zero. It is clear from either Eq. (7) or Eq. (7.1) that this eau 
be accomplished by requiring 

A A 1 A 

(0 J V - V 10) - (01 (V - V) H _ E (V - V) 1 0)Av = 0, (8) 

and this will be our defining equation for V. (The first term in Eq. (8) varies 
slowly with energy and need not be averaged.) 

We now have the necessary formalism, and will concentrate in the following 
on the physical picture. 

III. l'ICTURE OF LANE, THOMAS AND WIGNER 

We will now discuss the picture of Lane et al. (7) which will be necessary for 
our later development. According to these authors, for }VP ,,__, E,, , i.e., for energies 
of the compound state in the neighborhood of the single-particle energy En , 

only the term m = m' = n is important in Eq. (4.1) and the (on I p)2 are large 
only in the neighborhood of En • Another way of stating it is that in the strength 
fonction (-yP/ D)Av, only terms in the expression (4.1) with m = m' = n are 
important for such energies, and the strength fonction should have a pronounced 
maximum in the region E ,,__, En • Remembering that W P has a small negative 
imaginary part, we can easily obtain the strength fonction in the following way: 

i1r(I;\v Im(I: w/_1'._ Etv = k~R2 lm ~,{<omlH ~ Elom') 
(9) 

<Î>m(R)ef>m,(R)} , 
AV 

In computing the right hand sicle of Eq. (9) we can make use of the identity, Eq. 
(6.1) and our definition of V. Then, 

/ 1 1 1 ,\ / 1 1 1 ,\ \ Om H _ E Om / Av = \ Om H _ E Om /' (10) 

1 By the average of a function F(E) we mean 

F(E)Av = J F(E')W(E - E') dE', 

where W is a weight function which we shall specify later [sec Eq. (12.1)]. As far as the 
present considerations go, we could use the rectangular weight function employed by Fesh
bach et al., with which 

l JE+I/2 
F(E)Av = - F(E') dE'. 

J E-I/2 
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W e easily obtain the simple result 

. ('Yp) 
î'll" ]) Av 

lm L l' I'm E ... 
m !,;m - 1 

(10.1) 

For the single particle resonance n, which is assumed to be at low energy, I'n is 
nearly real and approximately equal to f3n of Eq. (2.1), so that the contribution 
from it will be 

· ('Yp) "-' I'n(W + f3n/2) 
Mr D Av= (tn - E)2 + (W + f3n/2) 2 ' 

(11) 

i.e., of order I'n/W on the single-particle resonance (at low energies we can neg
lect f3n, which depend;-; linearly on k, compared with W). It is clear that the 
contribution of the other levels will be at least of order W / t::,.Em smaller,2 where 
t::,.Em is the distance hetween single-particle levels of the same angular momen
tum (i.e., same channel a). This distance is of the order of U, the real part of V. 

It is seen from the foregoing that the validity of the picture of Lane et al. 
depends on W « U, which is also one of the criteria for the existence of marked 
resonances in V. 

We will digress for a moment to discuss W and t::,.Em for the actual physical 
case, taking the parameters of V from empirical fits. Let us consider, by way of 
example, the nucleus A = 160, where the 4s single-particle resonance occurs at 
zero energy experimentally, and take V as a square well of radius R. The occur
rence of the 4s resonance requires KR ""' (7 /2)11", where K is the wave number 
for a particle of zero energy, measured from the bottom of the well. The 5s 
resonance will occur for K'R ,..._,, (9/2)11". Hence E' /E = 81/49, where E and E' 
are measured from the bottom of the well. For a well depth of 42 Mev, as used 
hy Feshbach et al., !::,.},; = E' - E = 27 Mev. Further, the r m's are mainly real 
for low bombarding energies, so that the contribution of the 5s level to (10.1) 
is really of order W2/(t::,.E)2. The values of W are, at most, a few Mev for bom
barding energies of several Mev, and in the low energy region considered by 
Feshbach et al. only 1-2 Mev. In fact, when the spin-orbit force is included in 
the empirical fits they will probably be even smaller [Brown and De Dominicis 
(5), p. 76]. Thus, there is little doubt of the satisfaction of the condition 
W / ( t::,.Em) « 13, which is the criterion for the validity of the model. 

2 Since the sum in Eq. (10.1) relates only to the single-particle well, one can, of course, 
carry out the calculation of the sum exp!icitly for special cases, such as a square well, and 
verify that if E ~ <n , the sum of terms m ;= n contribute in order W /f>Em (See the Appendix 
of Ref. 5). 

3 This discussion of the contribution of terms m ;= n in Eq. (10.1) has been carried out 
taking the same W for ail terms m, contrary to the spirit of Ref. 5. [See Appendix C of this 
reference where it is pointed out that V is a velocity dependent well in the formulation of 
Refs. 1-5.] However, the sum of terms rn ;= n must be the same in either method. 
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IV. PERTURBATION THEORY OF THE FIRST KIND 

In the perturbation theory we wish to develop, it is clear that we will have to 
carry out an expansion in ciV = V(r, {) - V(r), since we wish to obtain expres
sions for quantities which do not contain the complicated cJ>P. 1t is well known 
that expansion of the actual wave fouctions cJ>(p) in terms of fm and Xi converges 
very slowly, if at ail. However, the perturbation expansions of certain average 
quantities, such as the average phase, involve less stringent criteria for conver
gence,4 which we shall now formulate. 

1 

I 

E 

1 I 

XXXXXXXXXXXX Wp 

X E j"' 

FIG. 1. Poles in the complex energy plane. The original average taken over the energy 
interval I can be carried out over the interval l'if the condition '1 « I is satisfied. 

In ail quantities we wish to average, we will have denominators of the form 
WP - E, where WP has a negative imaginary part. Let us consider by way of 
example, the fonction 

R(E) = L 'Yp . 
,, Wp - E 

(12) 

Ail of the pales of R(E) will lie below the real axis in the complex energy plane 
(see Fig. 1) and we canuse the method of Wigner (13) to average this fonction 
over energy. Thus, JR(E) dE = 0 if dE follows a contour lying wholly above the 

4 A similar situation occurs in calculation of the thermodynamic partition function, 
which is insensitive to perturbations smaller than kT, although they may be large compared 
with the distances between levels. 
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real axis. If we can neglect end effects, then the integral of R(E) along the strip l 
is equal to that along /'. That is, if T/ is the distance of l' above the real axis, 
then R(E)Av = R(E + ir,)Av neglecting end effects. Such a procedure is often 
convenient because addition of the imaginary part ir, removes the rapid fluctua
tions encountered in R(E) whenever E = tp • 

This method gives inessential complications because of the end effects. W e 
can avoid these by defining the average with respect to the smooth weight fonc
tion 

l 1 
1r (E _ B')2 + 12 

W(E - E') (12.1) 

instead of the rectangular weight fonction employed above. Here l corresponds 
to the interval we are averaging over. Then 

l 100 R(E') I 

R(E)Av = ; _00 (E _ E')2 + 12 dE 
(13) 

= L w î'l' "/ = R(E + il). 
p p - !J - 1, 

Consequcntly, averaging with respect to this weight fonction is equivalent to 
adding a positive imaginary part, equal to the interval averaged over, to the 
energy. 

It is clear that if such average quantities are not to fluctuate, the interval l 
must cover many compound states p. 

By applying this method to Eq. (8), we find that the defining equation for V 
becomes 

\ 01 (V - Ï' + 'W) [ 1 - H _ ~ _ il (V - V + 'W) Ji 0) = 0, (14) 

where we have separated V into 

v = V- w, 

with 

V= (01 VI O). 

N ow, Eq. (14) can be explicitly solved for 'W. For brevity, we call 

e = H = E - il, 

e = n - E - il = c - ( V - V). 

(15) 

(15.1) 

(16) 
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then Eq. (14) can be written 

(0 I (V - V+ 'W) [ 1 - ~ (e - ë + 'W) Ji 0) 

= w [ 1 - (01 ( V - V) ~ 10)] + \ O i ( V - V) } ë i O) = o, 
(17) 

where we have made use of the fact that [see Eq. (10)] 

/ 111 \ 1 \O ë O/ = ë - w· (11.n 

The last equation in (17) gives immediately 

1 
'W = -------

1 - (01 (V - V) i I O) \ o j (V - V)~ (V - V) i o) 
(18) 

= \/ O i ( V - V) 1 _ ( V - V) i O \/' 
e - Qo(V - V) 

where 

Qo = JO) (O j. (18.1) 

Eq. (18) has been obtained independently by Feshbach (14). 
In working with Eq. (18) it clearly will be advantagcous to work with a repre

sentation for the extra particle which is diagonal in T + V rather than in T + V. 
For the simple case we have been considering in which V is a square well, the ei
genfunctions are the same for the two cases, but the energies diffcr by iW. We 
shall therefore not bother to change the notation, but it should be remembered 
that the single-particle energies do not now contain W, i.e., the new Em are 
E m = Em - if3m/2. 

W e now investigate the eigenfunctions and eigenvalucs of the operator 

JC = H - Qo (V - V). 

We label them by nv and W/, i.e., 

JCQP = W p 1Üp , (19) 

N ow - Q0( V - V) can be considered as a small perturbation sin ce the Üv are not 
very different from the q,(vl. Thus, we choose 

nv = q,(p) + onv , 
(20) 
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To lowest order 

Wp' = Wp, (20.1) 

Using Green's theorem and assuming Üp to satisfy the same boundary conditions 
as cf>CP\ we obtain 

(21) 

= (WP - Wn)a/ + L (pl(V - Y)IOm)(Omjn), 
m 

where we have set Wp' = WP and QP = cf>CPl on the right-hand sicle, since we wish 
to compute ap n only to lowest order. Employing 

(p IV - VI Om) = (p I H - fl l.Om) = ( WP - Em - i t) (p I Om), (22) 

we obtain 

( w - E - i f3m) 
n P m 2 

aP = ~ Wn _ WP (p I Om)(Om I n). 
(23) 

Now, for order of magnitude estimates, 

(p I Om) (Om I n)f3m'"" (p I Om>2f3m "-' "(p 

and, on the giant resonance, 

It is clear, therefore, that the apn are large only if Wp - Wn'"" W'Yp/f3m, and, 
therefore, because of the smallness of "/p , only a few of the neighboring cf>'s are 
mixed into each Q by the perturbation. 

Consequently, we see from Eqs. (20.1) and (23) that the term -Q0(V - V) 
viewed as a perturbation, does not change the eigenvalues appreciably and that 
the new eigenfunctions are combinations of the old ones taken over a narrow 
range. 

We are now ready to discuss the criteria for perturbation theory. We can ex
press the matrix element as 

- 1 -
(Om 1 'W(E) 1 Om) = (Om IV - VI p) W _ E _ il (p IV - VI Om). (24) 

p 
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In a perturbation expansion of the type 

- 1 00 

W(JC) = (0 J (V - V) H _ JC _ il ~u ( - If 

-((1 - Qo)(V - f') R _Je_ ily (V - V) I 0), 

(25) 

the lowest order term of the expansion of (25) can be cxprcssed as 

(0m I W(E) 1 0m) ,.__, L (Om I V - :. 1 J~)~n~ ~ - l' 1 Om) . (26) 
J,n Jn 'l 

The 1:mme rcsult eau be obtained by rcplacing I p) by Li, n I jn) (jn I p) in Eq. 
(24) and theu approximating W P by E in . This approximation is justified if I is 
large, becausc the (jn I p) are large only if WP - Ejn ,.__, W by the argument8 of 
the preceding section. We illustrate the situation in Fig. 2. In the complex cncrgy 
plane the state I jn) will have an apprcciable probability of being found in states 
1 p ), as shown above, distributcd ovcr a region of width W. lt can be seen that 
what we arc doing in going from Eq. (24) to Eq. (26) is approximating the dis
tances in the energy plane from E + il - WP by the common distance E + il -

• E+ll 

w 

XXXXXXXXXX Wp 

X Ejn 

FIG. 2. Poles in the complex energy plane. With the weight function of Eq. (12,1) the 
average of a fonction of E over the interval I is given by the value of the function at E + 
il. 
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E in . If E - Ein » W, this is justified. This case was discussed in detail in Ref. 
1. We show in the figure the worse case that can happen for a given I, i.e., where 
Ein ,..._, E. Then, clearly we must have I > W for the expansion to converge. 

The expansion of W in the above fashion has been carried out by Bloch (12). 
With assumptions of a randomness in signs of the matrix elements he arrives at 
the conclusion that Eq. (26) is a good approximation to Eq. (24). We do not, 
however, want to make such an assumption, and we will see later that it is, in 
fact, unjustified. 

Now, the decisive point is that W is a fonction of E. 5 The total width of the 
state \ Jn) is determined primarily by the value of W for a particle of energy 
E - Ei above the Fermi energy. (We neglect the width of the excited state 
xl~); since it is a true compound state, its width is much smaller than that of 
the single particlc state f"' in the well). Taking the quadratic dependence of W 
given by simple theories (8, 15, 16) which we will discuss later, 

( E - Ej)2 
Wi= -y- W, (27) 

where we have put a lower suffix J on W to indicate that it refers to the state Jn. 
In other words, the width of the state that the single particle excitation decays 
into is less than the width of the original single-particle excitation. 

Usually, the state J will be a highly excited one, since the number of states per 
Mev available increases exponentially with excitation,6 and, in this case, W i « 
W. Of course, the more highly excited states tend also to have a more compli
cated structure, so that the matrix elements for excitation of the A particles 
become smaller. We shall see in the next section that the ratio E - Ei tends to 
be ,...__, 1 /3 or, W i/W ,...__, l /9. However, in the case of easily deformable nuclei, 
there are strong matrix elements to low-lying states J, the collective ones. We 
will return to consideration of these nuclei later. 

From the foregoing, we sce that we can usually satisfy the inequalities 

Wi < I < W. (28) 

Consequently, we can average over an interval which is large enough for the con
vergence of perturbation theory, but small enough so that one can still obtain 
information about the shape of the single-particle resonance, of width ,...__, W. (In 
fact, our neglect of variation in the \ m) in the various averages taken, constrain 
us to average over a distance < W). We have, therefore, given a justification of 

'That this is important was pointed out by Prof. Bethe (priva te communication). 
6 The energy of excitation is limited, since we must assume, for reasonability, that the 

initially excited particle does not drop into a state already occupied. This is inconsistent 
with our neglect of antisymmetrization, but this does not seem to be an essential difficulty. 
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the expansion introduced by Bloch (12) (but not of his random phase approxima
tion, which we shall return to in Section VI). 

With slight modification, the same arguments apply to the case of inelastic 
processes, going into a low excited final state. Here the transition amplitude is 

2M { , • , • 1 • 1 
S~~a'i = -V (ja i V- VI Oa) - (ja 1 (V - V) H _ E'(V - V)IOa)J 

- kil R2e-2ikR L 1 1 {< ·m' 1 V - VI Om) (29) 
2M m,m1 Em - E Em' - E J 

I • 1 • } - (jm I (V - V) H _ E (V - V) 1 Om) , 

where j is assumed to be a low excited state. Perturbation theory can be used to 
calculate (S~~a'i)Av since the states that m and m' decay into are, in general, of 
substantially lower energy and, consequently, have a smaller width. This givcs 
the result, in first approximation, 

(s in ) ,..._,, 2M ( . '1 V V- 1 0 ) a,a'j Av= -v Ja - a , (29.1) 

which has been used extensively in calculating direct interaction processes [see, 
e.g., Levinson and Banerjee (17)]. Thus, our justification of perturbation theory 
of the first kind provides a justification for this type of calculation. 

V. PERTURBATION THEORY OF THE SECOND KIND 

The relation (29.1) is an important one, in that it justifies the use of perturba
tion theory-in the usual terminology, Born approximation with distorted waves 
-in direct interaction calculations. W e found, also, in the last section, that the 
average elastic scattering phase was reproduced by V = V + 'W with 'W given 
to lowest order by Eq. (26). This latter relation is interesting, but not well 
adapted for the calculation of 'W, since it still involves the highly complicated 
nuclear states Xi(Û. We therefore develop a perturbation expansion of the type 
used by Brueckner et al. (8), which essentially relates the nuclear states xi{) 
back to shell model states. This expansion gives an expression for 'W which is prac
tical for calculation; however, to satisfy the criterion for its validity, one must 
average over a large energy interval, as we shall see. 

Before proceeding with the general development, we shall first sketch an ex
tension of the theory of the preceding section, which is helpful in understanding 
the la ter developments. W e introduce the two component excitation 

(30) 
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where the Ai are the eigenfunctions of the A-1 particles in the nucleus after re
moval of the kth particle, and fm and fn are the eigenfunctions of the r0-particle 
(which we denoted with the r-coordinate before) and the rrparticle in the well 
V', produced hy the A-1 particles. We can again expand 

g,<P\ro, { - 1, rk) = L bJmnAifmfn · (31) 
jmn 

Most of the development is, by now, fairly obvious, and we quote only the re
sults. Perturbation theory involves forming the unit operator Li, k, 1 1 jkl)(jkl 1 

and then approximating the denominator in Eq. (24) by Eikl - E - il when 
the jld term occurs in the unit operator. From the development of the last sec
tion, we see that this replacement is justified if I is greater than the range over 
which the (jkl I is spread into the (p \. This spread cornes from three sources. 

(i) and (ii). The particle in either state k or l can internet with one of the A - I 
particles in state (j I so that the two-particle excitation, in perturbation theory 
language, decays into a three-particle excitation. To order 1 /A, the width from 
these processes is just the sum of the imaginary parts of the single-particle ener
gies Ek and E 1 in the original well V(r). 

(iii) The two particles in state k and l can internet and the two-particle exci
tation can go back into a single-particle excitation I on). The width from this is 
small compared with the width of the single-particle excitation I om) which can 
decay into a large number of different two-particle excitations with similar matrix 
elements. Only this contribution to the two-particle width was noted in Brueck
ner et al. (8), and, consequently, these authors obtained much too low an esti
mate of the width of the two-particle excitation. 

The contribution from (i) and (ii) can be estimated in the same way as we ar
rived at Eq. (27). Thus, in terms of the imaginary part of V for the initial single
particle excitation (which we now label by W m), 

W + W = {( t1c - E F )2 + (tz - E F )2l W 
k l (tm - EF)2 f m • 

(32) 

Since Ek - EF and tz - EF are small compared with Em - Ef', W" + W 1 will 
be less than W m • In most cases, the single-particle excitations will decay into a 
state in which both particles are far down in the well, so that the width of the 
two-particle excitation will be substantially less than that of the original state. 
Then we can satisfy W" + Wz < I < W m. The first inequality is the criterion 
for perturbation theory of the type employed, and the second one is necessary if 
any information about the detailed shape of the giant resonance is to be obtained 
and if our averaging procedure is to be consistent. (We neglected the variation 
in I m) over the interval I.) 

There is, however, another width inherent in this treatment-at least in a prac
tical sense-and that arises because we don't know the Ei. In so far as there is 
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a spread in the Ej for states Ai which con tri bute to the sum Li ,k ,1 j jkl > < jkl /, 
we must average over an energy interval large enough so that this further 
spread is not important. The origin of this spread can be understood if we 
consider the original state xoW to be a shell-model state. Then, the state 
formed by removing the kth particle, i.e., the shell-model state with a hole 
in it, will not be an eigenstate of the Hamiltouian for the remaining A-1 particles, 
but the probability of fin ding it in one of the eigenstates j of energy near that of 
the shell modcl state with a hole in it will be unity. The width connectcd with 
this is related to the inverse of the timc in which the shell-model state with a 
hole into it decays into eigenstates of the rcsidual system [see Wilkinson (18), 
p. 1053, where a discussion of just this effcct, relative to the giant dipole photo
effect, is given]. 

Although the physical picture is simple in this formalism, it is not easy to take 
into account the identity of the particles by antisymmetrization since the A-1 
particles are described by one Hamiltonian, and the kth particle by another. W e 
now introduce a general formalism that treats them symmetrically, and also al
lows us to calculate the width for the dissolving of the shell-model state with a 
hole in it. 

We will employ, as unit operator in Eq. (24), 1 ij) (ij I where I ij) are the eigen
states of 

- f--- I'°'-H = L..., (Ti + V;) - - L..., V ii, 
i-0 2 i,j 

(33) 

where V; is the self-consistent potential defined in the state j ij) felt by the ith 
particle, and 

(:34) 

The c-number ~2 Li, i V;i has been subtracted to ensure that (ij I E I ij) is equal 
to the energy in the Hartree-Fock approximation. The crucial point in using the 
1 ij) as zero-order fonctions is then as to the extent of the sprcad in energy of the 
strength fonction (ij I p)2, which can be obtained from 

{ 1r(q I p)2} 
D Av 

(35) 

where 11 has been introduced as an artifice to calculate this strength fonction 
(its significance will be seen later) and it is given by 

11 = E - w, (35.1) 

where 'W is then defined by 

- 1 -
0 = (fJi'WifJ)- (i'Jl(V - V+ 'W) H _ E _ il(V - Y+ 'W)/q). (:36) 
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[See the similar development, Eqs. (6-8).] This equation is formally similar to 
Eq. (17) and by the same procedure as employed to solve it, we can find that it 
can be satisfied by choosing W to be diagonal in the J ij_) representation, with 
matrix elements 

(q J 'W I q) = (q J (H - l-Ï) l _ . (H - l-Ï) 1 q), (37) 
H - Q;;- ( V - V) - E - il 

where 

Q;; = 1 ij_) (q J. (37.1) 

In evaluating (q J W I q) by lowest order perturbation theory, which now means 
replacing 

IH - Qq (H - H> - E - i1r 1 

by 

J q') {E;;, - E - il)-1 (q' J, 

we find that 

w = LWii 
i<j 

with 

he half-width of the strength fonction 1r( (q I p)2/DlAv is given by 

A 

L lm (izlWiiliz) 
i <i 

following Eq. (35). 
If we identify I q) with the state in which A-1 particles form a state with the 

A levels from the bot tom of the well filled except for one hole in state k', and in 
which 2 particles are excited, then it is easy to identify the various parts of the 
width from the previous discussion: 

A 

lm L (qJWkiliz) 
j-1 

and 
A 

lmL(izlWo;Jq) 
i=l 
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eorrespond to the widths listed under (i) and (ii); lm (q 1 'Wko J q) corresponds to 
that listed under (iii), and can generally be neglected compared with the others. 
The sum lm L'i (q J 'Wk'i I ij) gives the width for the decay of the shell-model 
state with a hole in it, i.e., the width for absorption of the hole. Using the ap
proximate symmetry between hales and particles near the Fermi surface, we 
find that the total width of / q) is 

W;; = Wk + W 1 + Wk, 

(39) 

with 

Ek + E/ + 1 Ek' / ,...._, Em • 

Clearly, the largest phase space is available when the energy is equally distributed 
among the particles and the hole, so that Wk, W 1 and Wk' are each ,.....,(I/9)W m. 

Since Wk + W1 + Wk' < W m , we can again satisfy 

(40) 

and employ perturbation theory, although it is clear that all three of these quan
tities are of the same order of magnitude, so that the average must be carried 
out over an interval I that is a good fraction of the width of the single-particle 
resonance. 

In case / 0) can be described as a shell-model state, i.e., astate of independent 
particles with the ith particle moving in a well 

A 

L 1 (01 ViiJ0) 
i=O 

it is clear that the identity of the particles can easily be taken into account. In 
this case, we can assign an imaginary part to the energy of the incident particle 
of 

W m = lm < 0m I (t Vo; - LVo) J ij) (g_ J (I:Voi - I:i\i) 1 0m) 

E;; - E - il 
(41) 

with both I om) and I q) completely antisymmetrical states. ln the case of many 
states J q), this will be approximately 

(42) 

and it is just this quantity that has been evaluated for the case of the infinite 
nucleus by Brueckner et al. (8) 
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VI. DISCUSSION 

The main fonction of the development in this paper is to make the connection 
between average properties of the many-body system and those calculated in 
the simple picture of particles in a complex well. We defined single-particle and 
two-particle excitations in this complex well, and showed how the widths of these 
excitations were, on the one hand, related to the distance over which these sim
ple excitations had an appreciable probability of occurring in the true compound 
states of the system of A + 1 particles, and, on the other hand, related to the 
imaginary part of the complex potential. In other words, we related the relevant 
strength fonctions to parameters of the complex potential. 

It was shown that the width of the two-particle excitation is determined mainly 
by the sum of probabilities of either of the two excited particles or the hole going 
into compound states [see the discussion following Eq. (38)], and that the proba
bility of the two particles interacting so that the two-particle excitation returns 
to a single-particle one-i.e., so that one of the particles drops into the hole-is 
very small compared with this. In the work of Brueckner et al. (8), only this lat
ter effect was taken into account, and they consequently obtained much too small 
a value for the width of the two-particle excitation.7 

The fact that the widths of the important two-particle excitations are of the 
order of Mev means that one has to average over large energy intervals to satisfy 
the criterion for what we termed perturbation theory of the second kind, which 
was used by Brueckner et al. We showed, however, by assuming W to have a sim
ple quadratic dependence on energy, as given by the lowest-order expression in 
perturbation theory, that the two-particle excitation is smaller, by a numerical 
factor, than the single-particle one, and that, therefore, one could both satisfy 
the criterion for perturbation theory and average over an energy interval smaller 
than the width of the single-particle excitation. The three-particle excitation 
tends, by the same argument, to be smaller than the two-particle one, etc., so 
that good numerical results could be expected, by these arguments, if one goes 
to higher orders. 

In a paper following Ref. 8, Brueckner has shown (9) that iterating the simple 
shell-model type wave fonction considered in Ref. 8 increases the calculated 
value of W by a considerable factor, and introduces both a term linear in energy 
and a constant term in the dependence of W. Whereas his calculation brings out 
the sensitivity of W to correlations in the ground-state wave fonction near the 
Fermi surface, there are indications that these cannot be calculated in perturba
tion theory, i.e., that the ground state wave fonctions xo(~) cannot be obtained 
in the region of the Fermi surface by iterating the shell-model state (See Bohr 
et al. (19)]. Thus, we will not use Brueckner's numerical results, although we 
should note that terms in W linear and constant in the energy will make it more 

7 This was pointed out to one of the authors by Prof. Bethe. 
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<lifficult to satisfy our criterion for the validity of perturbation theory. It :,,eems 
that this problem of correlation in the ground state wave function is important 
for un adequate evaluation of W. 

The detailed establi:,,hment of the connection between the optical model 
parameters and the nucleon-nucleon force, discussed herc, is by no mean:,, neces
sary to explain the empirical agreement observed to date ut low energies between 
the experiments and calculations from complex wells. As discussed in Refs. 1-5 
thi:,, depends only on the imaginary part of the well being :,,mali compared with 
the real part. The unalysis of Section V :,,howed that the optical mode! cun be 
estahlü,hed in detail, only if one averages the phase over an interval which is a 
good fraction of the width of the giant resonance, and that only in this case can 
the cormection between W and the nucleon-nucleon forces be made. It would be 
of intere:,,t, therefore, to see if experimC11L8 in which the averaging is carried out 
over smaller intervals, give results in dctailed agreement with the theoretical 
predictions-more specifically, to see if the experimental results follow the Lo
rentz form of the cross Hection over the giant resonance, as discussed in Ref. 5. 

W e note, further, that in no order of perturbation theory is one justified in 
neglecting phase relations, i.e., in assuming random signs for matrix elements, 
as has been done by many authors. If averages are carried out over energy inter
vals of width sufficiently large for perturbation theory to be valid, then the vari
ons integrals can be related to those involving wave functions for simple types of 
excitations. For large nuclei, these wave functions can be replaced by those for a 
Fermi gas, and the relevant matrix elements become the Fourier transforms of 
the nucleon-nucleon potential. These vary slowly and regularly with momentum 
transfer. Thus, the third order term in the perturbation expansion is nonzero, and 
may be of the same order as the second-order term. In fact, in cases where the 
second-order term is abnormally small due to the limiting of phase space by the 
exclusion principle, it may be even larger. 

Our expressions ( 41) and ( 42) are valid approximations even in the presence of 
shell structure, their validity depending only on the fact that-because of the 
energy dependence of the imaginary part of the potential-the original single
particle excitation has a shorter lifetime (larger width) than the two-particle 
excitation in which the original energy is divided between the two particles. 
Thus, for light nuclei wherc there are relatively few two-particle excitations, de
tailed solution of Eq. ( 4 l) might give a W which varies nonmonotonically across 
a single-particle resonance. In going over to a Fermi gas to evaluate W, we ef
fectively drop structure coming from shell effects. 

In the discussion following Eq. (29) we promised to return to the question of 
easily deformable nuclei. In this case, there are large matrix elements from xo to 
low-lying rotational states, so that the initial single-particle excitation has a high 
probability of decaying into an excitation where the initial particle has only 



228 BROWN, DE DOMINICIS, AND LANGER 

slightly less energy. This state, therefore, has a width almost as large as the ini
tial width. In this case, one should separate out the transitions to low-lying col
lective states, which, together with the initial channel, we will term "choscn 
channels," and treat them separately in a system of coupled equations as has 
been clone by Sano et al. (20). (References to earlier work by Y oshida and others 
are given in this article.) 

In fact, our development, Eqs. (17) and (18) can be easily generalized so that 
(V - V) is a matrix between chosen channels, 1 0) becomes the space of the 
chosen channels, and Q0 excludes these from occurring in intermediate statcs. 
This is within the spirit of the optical model, where the distortion provided by 
the optical potential is supposed to represent the average effects from the great 
number of channels and corresponding large number of degrees of freedom which 
cannot be eonveniently treated in detail. 

We note finally that in our discussion, we have assumed throughout that the 
nucleon-nucleon potentials were well-behaved. The generalization to the case 
where hard cores are present can probably be made using techniques developed 
by Watson and Brueckner, but we do not believe this essential to an understand
ing of the points discussed here. 

After completion of this work, we received a priva te communication from Dr. 
A. Sugie which indicates that the formalism of Section IV can easily be anti
symmetrized. W e also received a preprint from Prof. H. Feshbach in which both 
the question of antisummetrization and the treatment of potentials which arc not 
well behaved are treated, using a representation formally similar to that em
ployed here in Section IV. Finally, A. M. Lane and J. E. Lynn discuss the prob
lem of antisymmetrization in a preprint, "The Theory of Radiative Capture 
Reactions." W e would like to thank all of these authors for communicating their 
results to us before publication. 
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