Packaging research encourages good habits, improves transparency, and enables collaboration.

Advantages

- **Encourages good habits**
 - Structure helps to work effectively, ideally community/peer’s conventions are used
 - Tools & workflows for Openness often increase efficiency at the same time
 - Tidy well-documented virtual laboratory (keep input, methods, output separate)
 - Packaging process can even simulate and independent reproduction (starting from scratch in container)
 - Quality of work improves with good programming practices, (perceived) overhead pays off quickly
 - Prepare for requirements by funders and journals (Open Science will become Science)

- **Improves transparency**
 - Easier to understand (readers, students, self)
 - More convincing and inspectable (reviewers)
 - Higher trust and confidence in results because of independent re-execution

- **Enables collaboration**
 - Future you is your best collaborator!
 - Data, methods, and software are demonstrated to work, which improves reuse and discoverability
 - Extensibility through good practices

Examples

- Geosimulation model with PCRaster/Python
- GEOBIA workflow
- Environmental citizen science

*As research compendium, ERC, Docker/Singularity image/container, VM, Binder, ReproZip package, Tale, Compute Capsule,...

Containerisation/VMs & UI

- x11docker makes sharing of display between host and container simple and secure (Linux)
- Web-based UI (incl. API) best
- Special UI encourages deliberate communication
- Containers scripted (Dockerfile) and better for reuse and “making”
- VMs larger, good for dissemination, but for use only... when did the Kernel ever break?

Research Compendium

https://research-compendium.science/

- Accompanies/enhances/is a scientific publication
- Container for data, code, docs, notebooks; under clear licenses; distribution & managing
- “package-panium”: based on programming language modules, e.g. PyPI, CRAN, npm.

Executable Research Compendium (ERC)

https://o2r.info/erc-spec/

- Notebook serves as control file and input for display file (dual entry points)
- Software includes container for runtime environment
- UI bindings provide interactivity & linking of parts (Jupyter etc.)

"An article about computational science in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship."

(Engelkamp & Donnay 1999; doi:10.1109/MC.1999.750064)

Assisted Containerisation

Binder, CODE OCEAN, ReproZip

More & References

- Nus!, D., Konkol, M., Schutzeichel, M., Pebesma, E., 2018a. "Software includes container for geoscientific data analysis".
- Brown, C. T., 2012. "Virtual machines considered harmful for reproducibility".
- Buckheit, J., Donoho, D., 1995. "Image shrinkage by the Stein Unbiased Risk Estimate (SURE)".
- Brown, C. T., 2012. "Virtual machines considered harmful for reproducibility".
- Buckheit, J., Donoho, D., 1995. "Image shrinkage by the Stein Unbiased Risk Estimate (SURE)".
- Cook, N., 2017. "Using therepacc analysis as a scientific publication".
- Nus!, D., Konkol, M., Schutzeichel, M., Pebesma, E., 2018b. "Packaging data analyzed work reproducibly using Jupyter and container scripting".
- Nus!, D., Schutzeichel, M., 2017b. "Sharing your analysis for reproducible science with containerit".
- Nus!, D., 2018. "Making the publication process sustainable, reproducible and open source with containerit".
- Marcowertz, F., 2015. "Packaging research with containerit".
- Buckheit, J., Donoho, D., 1995. "Image shrinkage by the Stein Unbiased Risk Estimate (SURE)".
- Marwick, B., Boettiger C., Mullen L., 2018. "Notebooks for scientific publication".
- Brown, C. T., 2012. "Virtual machines considered harmful for reproducibility".
- Nus!, D., Knoth, C., 2017. "Combining the publication process with sustainable research computation".
- Nus!, D., Konkol, M., Schutzeichel, M., Pebesma, E., 2018a. "Packaging data analyzed work reproducibly using Jupyter and container scripting".
- Nus!, D., Konkol, M., Schutzeichel, M., Pebesma, E., 2018a. "Packaging data analyzed work reproducibly using Jupyter and container scripting".
- Nus!, D., Konkol, M., Schutzeichel, M., Pebesma, E., 2018b. "Packaging data analyzed work reproducibly using Jupyter and container scripting".
- Buckheit, J., Donoho, D., 1995. "Image shrinkage by the Stein Unbiased Risk Estimate (SURE)".
- Marwick, B., Boettiger C., Mullen L., 2018. "Notebooks for scientific publication".
- Brown, C. T., 2012. "Virtual machines considered harmful for reproducibility".
- Nus!, D., Knoth, C., 2017. "Combining the publication process with sustainable research computation".
- Nus!, D., Konkol, M., Schutzeichel, M., Pebesma, E., 2018a. "Packaging data analyzed work reproducibly using Jupyter and container scripting".
- Nus!, D., Konkol, M., Schutzeichel, M., Pebesma, E., 2018b. "Packaging data analyzed work reproducibly using Jupyter and container scripting".