Magneto-hydro-dynamic simulation of Edge-Localised-Modes in tokamaks
Description
In order to produce energy from fusion reactions in a tokamak, the plasma must reach temperatures higher than that of our sun. The operation regime called H-mode enables one to acquire a plasma confinement close to fusion conditions. Due to the formation of a transport barrier at the plasma edge, turbulent transport is reduced, and the total plasma pressure increases, resulting in a strong pressure gradient at the edge. If this pressure gradient, localised at the plasma-vacuum boundary, becomes too steep, a magneto-hydro-dynamic instability is triggered and part of the plasma pressure is lost. This instability, hence called Edge-Localised-Mode, provokes large heat fluxes on some of the plasma-facing components of the machine, which could set operational limits for a tokamak the size of ITER. In order to understand this instability, and to determine the non-linear mechanisms behind the ELMs, the JOREK code is used. The work presented in this thesis is based on MHD simulations of ballooning modes (responsible for ELMs) with the JOREK code. At first, simulations are done for standard plasmas, inspired of experimental machines. In particular, the plasma rotation at equilibrium, in the region of the edge pressure gradient, is studied in order to obtain an analysis of the effects that such a rotation can have on the linear stability of ELMs and on their non-linear evolution. Then, as a second step, simulations are applied to plasmas of the experimental tokamaks JET and MAST (England). This permits the direct comparison of simulation results with experimental observations, with the main goal of improving our global understanding of ELMs. Adding to this physics aspect, the confrontation of the JOREK code with diagnostics of JET and MAST brings to a validation of simulations, which should prove that the simulations which were obtained do correspond to ELM instabilities. This first step towards the validation of the code is crucial concerning the simulation of ELMs in ITER, and the prediction of ELM-related physics in future fusion reactors. (author)
Abstract (French)
Afin de produire de l'energie a partir des reactions de fusion dans un tokamak, le plasma doit etre chauffe a des temperatures plus elevees que celle de notre soleil. Le regime d'operation appele mode-H permet d'acquerir un confinement du plasma proche des conditions requises a la fusion. Grace a la formation d'une barriere de transport au bord du plasma, la turbulence est diminuee, et la pression du plasma s'accroit, donnant lieu a un fort gradient de pression au bord. Toutefois, si ce gradient de pression, situe a la limite entre le plasma confine et le vide, devient trop eleve, une instabilite magnetohydrodynamique est declenchee, et la pression accumulee dans le plasma est perdue. Cette instabilite, appelee Edge-Localised-Mode, provoque des flux d'energie considerables sur les composants face au plasma, ce qui ne peut etre accepte pour un tokamak de la taille d'ITER. Pour mieux comprendre la physique de cette instabiliite, et determiner les mecanismes non-lineaires des ELMs, le code JOREK est utilise. Les travaux presentes ici sont bases sur la simulation MHD des modes de ballonnements (responsables des ELMs) avec le code JOREK. Dans un premier temps, les simulations sont faites pour des plasmas standards, inspires de plasmas experimentaux. En particulier, la rotation du plasma a l'equilibre, au niveau du gradient de pression, est etudiee pour parvenir a une analyse des effets que cette rotation peut avoir sur la stabilite lineaire des ELMs et leur evolution non-lineaire. Les simulations sont ensuite appliquees a des plasmas de tokamaks actuellement en activite: JET et MAST, en Angleterre. Cela permet notamment la comparaison des resultats de simulations aux observations experimentales, qui a pour but principal d'ameliorer notre comprehension de la physique des ELMs. Ajoute a cet aspect physique, le fait de confronter le code JOREK a des diagnostiques de JET et MAST amene vers une validation des simulations, qui a pour but de demontrer que les simulations obtenus correspondent bien a des ELMs. Cette premiere etape vers une validation du code est incontournable pour la simulation coherente d'ELMs dans ITER, un challenge pour JOREKFiles
43127242.pdf
Files
(10.7 MB)
Name | Size | Download all |
---|---|---|
md5:2109a7715a676d9ab3095663fd9543b5
|
10.7 MB | Preview Download |
Additional details
Additional titles
- Original title (English)
- Simulation magneto-hydro-dynamiques des Edge-Localised-Mode dans un tokamak
Identifiers
Publishing Information
- Imprint Pagination
- 159 p.
- Report number
- FRCEA-TH--3593
INIS
- Country of Publication
- France
- Country of Input or Organization
- France
- INIS RN
- 43127242
- Subject category
- S70: PLASMA PHYSICS AND FUSION TECHNOLOGY;
- Resource subtype / Literary indicator
- Thesis
- Quality check status
- Yes
- Descriptors DEI
- BALLOONING INSTABILITY; BOUNDARY CONDITIONS; COMPUTERIZED SIMULATION; DIVERTORS; EDGE LOCALIZED MODES; FINITE ELEMENT METHOD; J CODES; MAGNETOHYDRODYNAMICS; PELLET INJECTION; PLASMA; THERMONUCLEAR REACTIONS; TOKAMAK DEVICES; TURBULENCE;
- Descriptors DEC
- CALCULATION METHODS; CLOSED PLASMA DEVICES; COMPUTER CODES; FLUID MECHANICS; HYDRODYNAMICS; INSTABILITY; MATHEMATICAL SOLUTIONS; MECHANICS; NUCLEAR REACTIONS; NUCLEOSYNTHESIS; NUMERICAL SOLUTION; PLASMA INSTABILITY; PLASMA MACROINSTABILITIES; SIMULATION; SYNTHESIS; THERMONUCLEAR DEVICES;
Optional Information
- Notes
- 83 refs.; Available from the INIS Liaison Officer for France, see the 'INIS contacts' section of the INIS-NKM website for current contact and E-mail addresses: http://www.iaea.org/inis/contacts/