Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Banach spaces
Creators
- 1. Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)
- 2. Department of Mathematical Sciences, Bayero University, Kano (Nigeria)
Description
Let E be a real uniformly convex Banach space whose dual space E* satisfies the Kadec- Klee property, K be a closed convex nonempty subset of E . Let T1, T2, . . . , Tm : K → K be asymptotically nonexpansive mappings of K into E with sequences (respectively) {kin}n=1∞ satisfying kin → 1 as n → ∞, i = 1, 2 , ...,m and Σn=1∞(kin - 1) < ∞. For arbitrary ε element of (0, 1), let {αin}n=1∞ be a sequence in [ε, 1 - ε ], for each i element of { 1, 2 , . . . ,m} (respectively). Let {xn} be a sequence generated for m ≥ 2 by, x1 element of K, xn+1 = (1 - α1n)xn + α1nT1nyn+m-2, yn+m-2 = (1 - α2n)xn + α2nT2nyn+m-3, ..., yn = (1 - αmn)xn + αmnTmnxn , n ≥ 1. Let Intersectioni=1m F (Ti) ≠ 0 . Then, {xn} converges weakly to a common fixed point of the family {Ti}i=1m. Under some appropriate condition on the family {Ti}i=1m, a strong convergence theorem is also roved. (author)
Availability note (English)
Available from INIS in electronic form; Also available at: http://publications.ictp.it/preprints.htmlFiles
39008818.pdf
Files
(146.8 kB)
Name | Size | Download all |
---|---|---|
md5:cb7dfa7c8c633f22d88cae403a62aeb2
|
146.8 kB | Preview Download |
Additional details
Publishing Information
- Imprint Pagination
- 12 p.
- Report number
- IC--2007/053
INIS
- Country of Publication
- International Atomic Energy Agency (IAEA)
- Country of Input or Organization
- International Atomic Energy Agency (IAEA)
- INIS RN
- 39008818
- Subject category
- S71: CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS;
- Quality check status
- Yes
- Descriptors DEI
- ASYMPTOTIC SOLUTIONS; BANACH SPACE; CONVERGENCE; MAPPING; MEASURE THEORY;
- Descriptors DEC
- MATHEMATICAL SOLUTIONS; MATHEMATICAL SPACE; MATHEMATICS; SPACE;
Optional Information
- Notes
- 28 refs