Filters
Results 1 - 10 of 83830
Results 1 - 10 of 83830.
Search took: 0.122 seconds
Sort by: date | relevance |
AbstractAbstract
[en] Highlights: • Mode 4 has the highest exergy efficiency. • Mode 2 has the largest exergy density. • Second heat exchanger has the largest exergy destruction. - Abstract: Advanced adiabatic compressed air energy storage system plays an important role in smoothing out the fluctuated power from renewable energy. Under different operation modes of charge-discharge process, thermodynamic behavior of system will vary. In order to optimize system performance, four operation modes of charge-discharge process are proposed in this paper. The performance difference of four modes is compared with each other based on energy analysis and exergy analysis. The results show that exergy efficiency of mode 4 is the highest, 55.71%, and exergy density of mode 2 is the largest, 8.09 × 106 J m−3, when design parameters of system are identical. The second heat exchanger has the most improvement potential in elevating system performance. In addition, a parametric analysis and multi-objective optimization are also carried out to assess the effects of several key parameters on system performance.
Primary Subject
Source
S0196890418308793; Available from http://dx.doi.org/10.1016/j.enconman.2018.08.030; © 2018 Elsevier Ltd. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Husain, M.S.
International Centre for Theoretical Physics, Trieste (Italy)
International Centre for Theoretical Physics, Trieste (Italy)
AbstractAbstract
[en] Computations have been performed for flat plate efficiency factor, heat removal factor, heat gained by fluid for different materials used for the tubes and fins of flat plate tubular solar collectors. 3 refs, 17 figs, 4 tabs
Primary Subject
Source
May 1990; 10 p
Record Type
Report
Report Number
Country of publication
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Liquid desiccant systems have been paid attention because of its advantages in energy saving and an environmental friendliness. The use of liquid desiccant systems offers design and performance advantages over the solid desiccant systems, especially when solar energy is used for regeneration. The objective of this paper is to analyze the simultaneous heat and mass transfer characteristics of lithium chloride aqueous solution for the plate type dehumidification system. The effects of process air and solution inlet conditions on the dehumidification performance are studied in this study. It is found that the heat transfer coefficient of the air side gives much more significant effect on the absorption rate and dehumidification effectiveness than those of the solution and the coolant sides while the mass transfer coefficient of the solution side gives more significant effect than that of the air side. It is also found that the solution concentration is the most important factor for absorption performance improvement during the dehumidification process.
Primary Subject
Source
10 refs, 10 figs, 1 tab
Record Type
Journal Article
Journal
Journal of Mechanical Science and Technology (Online); ISSN 1976-3824;
; v. 27(6); p. 1875-1880

Country of publication
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Hyun, Jun Ho
Jeju National University, Jeju (Korea, Republic of)
Jeju National University, Jeju (Korea, Republic of)
AbstractAbstract
[en] Nature has been giving us energy from the beginning of the world. But human hardly use it. Solar energy is a kind of energy from the nature. This study has been carried out to study the use of solar energy as it is harnessed in the form of thermal energy. Solar energy is one of the most promising energy resources on earth and in space, because it is clean and inexhaustible. Heat for comfort in buildings can be provided from solar energy by systems that are similar in many respects to the water heater systems. To utilize the solar energy, we can not only solve the problem of energy shortage, but also can protect the environment and benefit the human beings. We must think about how to absorb the solar energy more efficiently, how to store more energy, and other problems such as additional electrical-heating system. This study deals with the collection of solar energy and its storage in all-glass solar vacuum tubes for different types of header design, flow passage and heat transfer devices. In order to elicit the most efficient combination of header design, flow passage, heat transfer hardware and operating conditions, we have studied four different types of solar collectors utilizing vacuum tubes. We selected the evacuated solar collector with metal cap and the all-glass evacuated solar collector. These collectors are more efficient than flat-plate collectors in both direct and diffuse solar radiation. The all-glass evacuated collector have been widely utilized due to their high efficiency, low heat losses, long lifetime and low costs. The evacuated solar collector in the present study uses a single vacuum solar collector either with a heat pipe (SEIDO 5) or with a 'dual pipe' flow passage (SEIDO 2). The one with heat pipe is designed such that the condensing section of heat pipe is inserted into a pipe header where the water from the storage tank is constantly circulated. Solar energy is transferred in the form of heat as it is ultimately saved in the storage tank. Similar principle is applied in the 'dual pipe' type where cold water enters the inner pipe and flows along the outer pipe raising its temperature thanks to the irradiation of solar energy. Different from these in its design and heat collection mechanism, all glass solar vacuum collector is utilized more efficiently and more conveniently in harnessing the solar energy. The 'U-pipe' type is one of those methods, which became quite popular recently with the usage of all glass solar vacuum tubes. Water is heated as it flows through the U-shaped copper pipe placed inside the vacuum tube. A rolled copper sheet tightly inserted along the inner surface of inner tube enhances heat transfer between the heated collector surface and the water contained in the U-shaped copper pipe. This study has been carried out a series of tests under the same conditions to elicit the most suitable model, which deems to enhance heat transfer and improve its durability in utilizing solar vacuum tubes
Primary Subject
Secondary Subject
Source
Feb 2002; 60 p; Available from Jeju National University, Jeju (KR); 12 refs, 45 figs, 6 tabs; Thesis (Mr. Eng.)
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Country of publication
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Highlights: • A technical solution to the power supply of wireless sensor networks is presented. • The low voltage produced by TEG is boosted from less than 1 V to more than 4 V. • An output current and voltage of TEG device is acquired as 21.47 mA and 221 mV. • The device successfully provides output power 4.7 mW in no electricity conditions. • The thermo-economic value of TEG device is demonstrated. - Abstract: Motivated by the limited power supply of wireless sensors used to monitor the natural environment, for example, in forests, this study presents a technical solution by recycling solar irradiation heat using thermoelectric generators. Based on solar irradiation and the earth’s surface-air temperature difference, a new type of thermoelectric power generation device has been devised, the distinguishing features of which include the application of an all-glass heat-tube-type vacuum solar heat collection pipe to absorb and transfer solar energy without a water medium and the use of a thin heat dissipation tube to cool the earth surface air temperature. The effects of key parameters such as solar illumination, air temperature, load resistance, the proportional coefficient, output power and power generation efficiency for thermoelectric energy conversion are analyzed. The results of realistic outdoor experiments show that under a state of regular illumination at 3.75 × 10"4 lx, using one TEG module, the thermoelectric device is able to boost the voltage obtained from the natural solar irradiation from 221 mV to 4.41 V, with an output power of 4.7 mW. This means that the electrical energy generated can provide the power supply for low power consumption components, such as low power wireless sensors, ZigBee modules and other low power loads
Primary Subject
Secondary Subject
Source
S0196-8904(15)00278-2; Available from http://dx.doi.org/10.1016/j.enconman.2015.03.060; Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Highlights: • A solar thermoelectric with micro-channel heat pipe system was presented. • Mathematical model of the system was built. • Experiment and the simulation were compared to verify the model. • Performance of the system with different factors was analyzed. - Abstract: Micro-channel heat pipe can convert the low heat flux to the high heat flux by changing the ratio of the evaporator area to the condenser area and has a higher heat transfer performance than the common heat pipe. Combining the solar concentrating thermoelectric generation with micro-channel heat pipe can save the quantity of thermoelectric generation and reduce the cost significantly. In this paper, a solar concentrating thermoelectric generator using the micro-channel heat pipe array was designed, and the mathematical model was built. Furthermore, the comparison of the experiment and the simulation between the solar concentrating thermoelectric generator using the micro-channel heat pipe array and the thermoelectric generations in series was made. In addition, the performance on the different areas of selective absorbing coating, different concentration ratios, different ambient temperatures, different wind speed all were analyzed. The outcomes showed the overall performance of the solar concentrating thermoelectric generator using the micro-channel heat pipe array system.
Primary Subject
Secondary Subject
Source
S0196-8904(16)00042-X; Available from http://dx.doi.org/10.1016/j.enconman.2016.01.025; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] A model has been solved in order to determine the thermal losses of a storage tank, where thermal energy is stored as sensible heat of a diathermic fluid at medium temperatures. A parametric analysis has been performed in order to evaluate the influence of various design parameters on the thermal discharge of the accumulator
Primary Subject
Record Type
Journal Article
Journal
Nuovo Cim., C; v. 7(2); p. 210-222
Country of publication
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The current study focuses on the consistent analysis of heat transfer in multichannel volumetric solar receivers used for concentrating solar power. Changes in the properties of the absorbing material and channel dimensions are considered in an optical model based on the Monte Carlo ray-tracing method and in a one-dimensional heat transfer model that includes conduction, convection, and radiation. The optical model results show that most of the solar radiation energy is absorbed within a very small channel length of around 15 mm because of the large length-to-radius ratio. Classification of radiation losses reveals that at low absorptivity, increased reflection losses cause reduction of the receiver efficiency, notwithstanding the decrease in the emission loss. As the average temperature increases because of the large channel radius or small mass flow rate, both emission and reflection losses increase but the effect of emission losses prevails
Primary Subject
Secondary Subject
Source
13 refs, 8 figs, 1 tab
Record Type
Journal Article
Journal
Transactions of the Korean Society of Mechanical Engineers. B; ISSN 1226-4881;
; v. 35(12); p. 1383-1389

Country of publication
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Xie, Yu; Wu, Shi-jun; Yang, Can-jun, E-mail: bluewater@zju.edu.cn
AbstractAbstract
[en] Highlights: • We developed a thermoelectric cap (TC) to harvest hydrothermal energy. • The TC was deployed at a hydrothermal vent site near Kueishantao islet, Taiwan. • The TC monitored the temperature of the hydrothermal fluids during the field test. • The TC could make the thermal energy of hydrothermal fluids a viable power source. - Abstract: Long-term in situ monitoring is crucial to seafloor scientific investigations. One of the challenges of operating sensors in seabed is the lifespan of the sensors. Such sensors are commonly powered by batteries when other alternatives, such as tidal or solar energy, are unavailable. However, the batteries have a limited lifespan and must be recharged or replaced periodically, which is costly and impractical. A thermoelectric cap, which harvests the thermal energy of hydrothermal fluids through a conduction pipe and converts the heat to electrical energy by using thermoelectric generators, was developed to avoid these inconveniences. The thermoelectric cap was combined with a power and temperature measurement system that enables the thermoelectric cap to power a light-emitting diode lamp, an electronic load (60 Ω), and 16 thermocouples continuously. The thermoelectric cap was field tested at a shallow hydrothermal vent site near Kueishantao islet, which is located offshore of northeastern Taiwan. By using the thermal gradient between hydrothermal fluids and seawater, the thermoelectric cap obtained a sustained power of 0.2–0.5 W during the field test. The thermoelectric cap successfully powered the 16 thermocouples and recorded the temperature of the hydrothermal fluids during the entire field test. Our results show that the thermal energy of hydrothermal fluids can be an alternative renewable power source for oceanographic research.
Primary Subject
Source
S0196-8904(15)01091-2; Available from http://dx.doi.org/10.1016/j.enconman.2015.12.003; Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Highlights: • The performance of an ejector in an Organic Rankine Cycle and ejector refrigeration cycle (EORC) was evaluated. • The achieved entrainment ratio and COP of an EORC system is affected significantly by the evaporator conditions (such as temperature, pressure and flow rate). • An optimum distance of 6 mm nozzle position was found that ensures a maximum entrainment ratio, the best efficiency and lowest loss in the ejector. • A reduced total pressure loss between the nozzle inlet and exit leads to a lower energy loss, a higher entrainment ratio and better overall ejector performance. - Abstract: Power-generation systems based on organic Rankine cycles (ORCs) are well suited and increasingly employed in the conversion of thermal energy from low temperature heat sources to power. These systems can be driven by waste heat, for example from various industrial processes, as well as solar or geothermal energy. A useful extension of such systems involves a combined ORC and ejector-refrigeration cycle (EORC) that is capable, at low cost and complexity, of producing useful power while having a simultaneous capacity for cooling that is highly desirable in many applications. A significant thermodynamic loss in such a combined energy system takes place in the ejector due to unavoidable losses caused by irreversible mixing in this component. This paper focuses on the flow and transport processes in an ejector, in order to understand and quantify the underlying reasons for these losses, as well as their sensitivity to important design parameters and operational variables. Specifically, the study considers, beyond variations to the geometric design of the ejector, also the role of changing the external conditions across this component and how these affect its performance; this is not only important in helping develop ejector designs in the first instance, but also in evaluating how the performance may shift (in fact, deteriorate) quantitatively when the device (and wider energy system within which it functions) are operated at part load, away from their design/operating points. An appreciation of the loss mechanisms and how these vary can be harnessed to propose new and improved designs leading to more efficient EROC systems, which would greatly enhance this technology’s economic and environmental potential. It is found that some operating conditions, such as a high pressure of the secondary and discharge fluid, lead to higher energy losses inside the ejector and limit the performance of the entire system. Based on the ejector model, an optimal design featuring a smoothed nozzle edge and an improved nozzle position is found to achieve an improved entrainment ratio, significantly better performance and reduced energy losses in the ejector.
Primary Subject
Source
S0306-2619(16)31441-6; Available from http://dx.doi.org/10.1016/j.apenergy.2016.10.017; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | 3 | Next |