Filters
Results 1 - 10 of 1230
Results 1 - 10 of 1230.
Search took: 0.023 seconds
Sort by: date | relevance |
AbstractAbstract
No abstract available
Primary Subject
Source
Israel Physical Society, Jerusalem; Bulletin of the Israel Physical Society; v. 23; p. 48-49; 1977; p. 48-49; Israel Physical Society 1977 annual meeting; Ramat Gan, Israel; 27 - 28 Mar 1977; Published in summary form only.
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Lin, H; Das, Tanmoy; Bansil, A; Wray, L A; Xu, S-Y; Hasan, M Z, E-mail: nilnish@gmail.com2011
AbstractAbstract
[en] We have extended the search for topological insulators to the ternary tetradymite-like compounds M2X2Y (M=Bi or Sb; X and Y=S, Se or Te), which are variations of the well-known binary compounds Bi2Se3 and Bi2Te3. Our first-principles computations suggest that five existing compounds are strong topological insulators with a single Dirac cone on the surface. In particular, stoichiometric Bi2Se2S, Sb2Te2Se and Sb2Te2S are predicted to have an isolated Dirac cone on their naturally cleaved surface. This finding paves the way for the realization of the topological transport regime.
Primary Subject
Source
Available from http://dx.doi.org/10.1088/1367-2630/13/9/095005; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
New Journal of Physics; ISSN 1367-2630;
; v. 13(9); [6 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Shyani, P.; Pradyumnan, E-mail: shynip@gmail.com
Proceedings of the materials and technologies for energy conversion and storage: book of abstracts2018
Proceedings of the materials and technologies for energy conversion and storage: book of abstracts2018
AbstractAbstract
[en] Thermoelectricity offers a green, clean and safe energy conversion technology as a remedy for both environmental issues like green house effect, global warming and environmental pollution an depletion of natural resources. Here we synthesize nanostructured Bi2Te3 by vacuum heating and ball milling and the nanostructured material is compacted by using hot pressing method
Primary Subject
Source
Chauhan, A.K.; Koiry, S.P.; Putta, Veerender; Jha, Purushottam (Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India)) (eds.); Bhabha Atomic Research Centre, Mumbai (India); 287 p; 2018; p. 114; M-TECS 2018: materials and technologies for energy conversion and storage; Mumbai (India); 26-29 Sep 2018
Record Type
Book
Literature Type
Conference
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Bismuth tellurite is a photorefractive material for holographic data storage offering unique fixing capabilities. Important material and electro-optic properties obtained by four-wave-mixing and data storage experiments are reviewed and recent results concerning the applicability of bismuth tellurite for holographic data storage, including dynamic range, multiplexing capabilities and bit-error evaluations, are presented. Furthermore, it is demonstrated how the latest progress in growing Bi2TeO5 made this crystal a candidate for durable holographic recording media.
Primary Subject
Source
S0022-3727(08)75848-0; Available from http://dx.doi.org/10.1088/0022-3727/41/22/224006; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Primary Subject
Secondary Subject
Source
Transactions of the American Nuclear Society 1975 annual meeting; New Orleans, LA; 8 Jun 1975; Published in summary form only.
Record Type
Journal Article
Literature Type
Conference
Journal
Transactions of the American Nuclear Society; v. 21 p. 6-7
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Mu, Xin; Zhou, Hongyu; He, Danqi; Zhao, Wenyu; Wei, Ping; Zhu, Wanting; Nie, Xiaolei; Liu, Huijun; Zhang, Qingjie, E-mail: wyzhao@whut.edu.cn, E-mail: zhangqj@whut.edu.cn2017
AbstractAbstract
[en] Highlights: • Stoichiometric Bi0.5Sb1.5Te3 films are fabricated by in-situ crystallization. • The (000l) orientations and high crystallinity of these films have been realized. • Three parameters of electrical properties (μ, σ, α) are simultaneously increased. • The relationship between the electric properties and orientations are calculated. • A layer-by-layer in-situ growth model is proposed for (000l)-oriented films. The preparation of high-performance Bi2Te3-based films is vitally important for the miniaturization of Bi2Te3 thermoelectric (TE) device. Herein, a series of stoichiometric Bi0.5Sb1.5Te3 films with different preferential orientations have been fabricated through in-situ crystallization during the co-sputtering process. We discover that the preferential orientation was transformed from (015) to (1010) to (000l) orientation with increasing the substrate temperature. The (000l)-oriented films exhibit the best electrical transport properties, which the maximum electrical conductivity of 8.0×104 S·m-1 and power factor of 3.8 mW K-2·m-1 are much more than those of the bulk material. The excellent properties are attributed to the high-crystallinity, well-controlled preferential orientation, and minimized compositional deviation. A layer-by-layer in-situ growth model is proposed to understand the formation mechanism of the (000l)-oriented films. Our work demonstrates that the electrical transport performance of Bi2Te3-based films can be remarkably improved through finely controlling the crystallinity and preferential orientation under the condition of stoichiometric composition.
Primary Subject
Secondary Subject
Source
S2211285517300137; Available from http://dx.doi.org/10.1016/j.nanoen.2017.01.013; Copyright (c) 2017 Elsevier Ltd. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Nano Energy (Print); ISSN 2211-2855;
; v. 33; p. 55-64

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Original Title
Diffuziya v plasticheski deformiruemo srede pri pryamoj ehkstruzii
Primary Subject
Source
Short note; for English translation see the journal Phys. Met. Metallogr.
Record Type
Journal Article
Journal
Fizika Metallov i Metallovedenie; v. 46(5); p. 1102-1106
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann, E-mail: fanchen@purdue.edu
arXiv e-print [ PDF ]2015
arXiv e-print [ PDF ]2015
AbstractAbstract
[en] The bandstructures of [110] and [001] Bi_2Te_3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects
Primary Subject
Source
(c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] By methods of X-ray phase, differential thermal, microstructural analyses the interaction in ZnTe-BiTe and ZnTe-Bi2Te2 is studied. It is shown that the ZnTe-Bi2Te3 section is quasibinary and the ZnTe-BiTe section is non-quasibinary in the Zn-Bi-Te ternary system. The phase diagram of the ZnTe-Bi2Te3 system is peritectic, solid solution based on bismuth telluride at 500 deg contains 5 mol% of zinc telluride. According to X-ray phase analysis in the whole region of the ZnTe-BiTe system compositions only phases on ZnTe and BiTe base (annealing at 500 deg) have been found
Original Title
Fiziko-khimicheskoe issledovanie sistem khal'kogenidy tsinka-khal'kogenidy vismuta
Primary Subject
Source
For English translation see the journal Russian Journal of Inorganic Chemistry (UK).
Record Type
Journal Article
Journal
Zhurnal Neorganicheskoj Khimii; ISSN 0044-457X;
; v. 28(8); p. 2104-2107

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The dimensionless thermoelectric figure-of-merit, ZT, of Bi2Te3 based alloys was investigated under a large temperature difference using a recently reported 'open/short circuit' measurement technique. It is shown that the measured ZT decreases with an increase in temperature difference. Theoretical analysis indicates that this dependence can be explained by taking into account the Thomson effect. An equation is obtained for a modified thermoelectric figure-of-merit which is valid for measurement over large temperature differences
Primary Subject
Source
S0022-3727(04)72585-1; Available online at http://stacks.iop.org/0022-3727/37/1301/d4_8_020.pdf or at the Web site for the Journal of Physics. D, Applied Physics (ISSN 1361-6463) http://www.iop.org/; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
1 | 2 | 3 | Next |