Filters
Results 1 - 10 of 4249
Results 1 - 10 of 4249.
Search took: 0.029 seconds
Sort by: date | relevance |
Miyanaga, Akihiko; Kawamoto, Masashi; Tsuchiya, Shinichi; Hagiwara, Koichi; Soda, Manabu; Takeuchi, Kengo; Yamamoto, Nobuyuki; Mano, Hiroyuki; Ishikawa, Yuichi; Gemma, Akihiko; Shimizu, Kumi; Noro, Rintaro; Seike, Masahiro; Kitamura, Kazuhiro; Kosaihira, Seiji; Minegishi, Yuji; Shukuya, Takehito; Yoshimura, Akinobu2013
AbstractAbstract
[en] The EML4–ALK (echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene) fusion oncogene represents a novel molecular target in a small subset of non–small–cell lung cancers (NSCLCs). The EML4–ALK fusion gene occurs generally in NSCLC without mutations in epidermal growth factor receptor (EGFR) and KRAS. We report that a case of EML4–ALK-positive NSCLC with EGFR mutation had a response of stable disease to both an EGFR tyrosine kinase inhibitor (EGFR-TKI) and ALK inhibitor. We described the first clinical report of a patient with EML4–ALK-positive NSCLC with EGFR mutation that had a response of stable disease to both single-agent EGFR-TKI and ALK inhibitor. EML4–ALK translocation may be associated with resistance to EGFR-TKI, and EGFR signaling may contribute to resistance to ALK inhibitor in EML4–ALK-positive NSCLC
Primary Subject
Source
Available from http://dx.doi.org/10.1186/1471-2407-13-262; Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671182; PMCID: PMC3671182; PUBLISHER-ID: 1471-2407-13-262; PMID: 23714228; OAI: oai:pubmedcentral.nih.gov:3671182; Copyright (c) 2013 Miyanaga et al.; licensee BioMed Central Ltd.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0) (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
BMC cancer (Online); ISSN 1471-2407;
; v. 13; p. 262

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Fujiwara, Toshifumi; Eguchi, Takanori; Sogawa, Chiharu; Ono, Kisho; Murakami, Jun; Ibaragi, Soichiro; Asaumi, Jun-ichi; Okamoto, Kuniaki; Calderwood, Stuart K.; Kozaki, Ken-ichi, E-mail: eguchi@okayama-u.ac.jp2018
AbstractAbstract
[en] Genetic amplification, overexpression, and increased signaling from the epidermal growth factor receptor (EGFR) are often found in oral squamous cell carcinoma (OSCC) and thus EGFR is frequently targeted molecularly by the therapeutic antibody cetuximab. We assessed effects of cetuximab in control of EGF-driven malignant traits of OSCC cells. EGF stimulation promoted progression level of mesenchymal traits in OSCC cells, which were attenuated by cetuximab but incompletely. We pursued a potential mechanism underlying such incomplete attenuation of OSCC malignant traits. Cetuximab promoted secretion of EGFR-EVs by OSCC cells and failed to inhibit EGF-driven secretion of EGFR-EVs. Cetuximab was also found to be robustly secreted with the EGFR-EVs by the OSCC cells. Thus, EGF promotes the level of mesenchymal traits of OSCC cells and secretion of EGFR-EVs, which involve cetuximab resistance.
Primary Subject
Source
S0006291X18315304; Available from http://dx.doi.org/10.1016/j.bbrc.2018.07.035; Copyright (c) 2018 The Author(s). Published by Elsevier Inc.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Biochemical and Biophysical Research Communications; ISSN 0006-291X;
; CODEN BBRCA9; v. 503(3); p. 1267-1272

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] This study was performed to characterize the interaction of epidermal growth factor and radiation in two human head and neck squamous cell cancer cell lines of vastly different radiosensitivities (UM-SCC-6 radiosensitive; UM-SCC-1 radioresistant). It was determined that exposure to epidermal growth factor (10 ng/ml) for 24 h prior to radiation resulted in radiosensitization in both cell lines, however, the magnitude of radiosensitization was greater in the radiosensitive UM-SCC-6 cells compared to the radioresistant UM-SCC-1 cells. Treatment of the UM-SCC-6 cells with epidermal growth factor (EGF) (10 ng/ml) for 24 h resulted in a growth delay, however, cell growth returned to normal approximately 26 h following removal of EGF. Similar treatment of the UM-SCC-1 cells resulted in no growth inhibition. The 24 h preradiation exposures to EGF (10 ng/ml) did not affect the radiation-induced growth delay in either cell line. Additionally, the 24 h exposures to EGF (10 ng/ml) did not cause the cells to enter a more radiosensitive cell cycle phase. Further work will be necessary to determine whether events associated with the EGF-induced growth delay in the UM-SCC-6 cells are associated with the enhanced EGF-induced radiosensitization in these cells compared to UM-SCC-1 cells. 11 refs., 2 figs., 2 tabs
Primary Subject
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016;
; CODEN IOBPD3; v. 29(2); p. 243-247

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Endothelial dysfunction is a main feature of retinal neovascular diseases which are the leading cause of blindness in developed countries. Yes-associated protein (YAP) and signal transducer and activator of transcription factor 3 (STAT3) participate in angiogenesis via vascular endothelial growth factor (VEGF) signaling. Additionally, YAP can bind STAT3 in endothelial cells. In the study, dimethyloxalylglycine (DMOG) stimulated human retinal microvascular endothelial cells (HRMECs) was used as retinal endothelial hypoxia model. The proliferation of HRMECs, as well as t-YAP, p-STAT3 (Tyr705) increased, while p-YAP (Ser127), p-YAP (Ser397) decreased following hypoxia. Meanwhile, YAP and STAT3 translocated to the nucleus. YAP knockdown inhibited the proliferation, migration and tube formation of HRMECs. YAP overexpression up-regulated phosphorylation of STAT3. The YAP overexpression-induced HRMECs proliferation, migration and tube formation were reversed by S3I-201, a selective STAT3 inhibitor. YAP interacted with STAT3 to promote STAT3 nuclear translocation. Additionally, YAP and STAT3 promoted the transcription of VEGF synergistically. Finally, inhibition of YAP alleviated retinal pathological neovascularization in mouse oxygen-induced retinopathy (OIR) model. In summary, activated YAP interacted with STAT3 to promote the activation and nuclear translocation of STAT3, hence boosted the proliferation, migration and tube formation of HRMECs via VEGF signaling following hypoxia. The data will further elucidate the mechanisms of retinal neovascular diseases.
Primary Subject
Source
S0014482718306967; Available from http://dx.doi.org/10.1016/j.yexcr.2018.10.007; Copyright (c) 2018 Elsevier Inc. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association with the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction
Primary Subject
Source
S0006-291X(15)30255-2; Available from http://dx.doi.org/10.1016/j.bbrc.2015.07.024; Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Biochemical and Biophysical Research Communications; ISSN 0006-291X;
; CODEN BBRCA9; v. 464(2); p. 616-621

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Mehta, Vivek K., E-mail: vivek.mehta@swedish.org2012
AbstractAbstract
[en] Epidermal growth factor receptor (EGFR) is often overexpressed in tumors and has been associated with poor prognosis in some cancer types. The introduction of inhibitors of EGFR, such as erlotinib, represents an important recent advance in the targeted treatment of cancer. Several studies have evaluated inhibitors of EGFR in combination with radiotherapy, and a strong biologic rationale exists for the use of this combination in certain cancer types, including head and neck squamous cell carcinoma, non-small cell lung cancer, glioblastoma, esophageal cancer, and pancreatic cancer. Preclinical and clinical studies are underway to evaluate the combination of erlotinib with radiotherapy. To date, the results suggest that this approach is at least feasible and may result in modest improvement in outcomes compared with either modality alone.
Primary Subject
Source
Available from http://dx.doi.org/10.3389/fonc.2012.00031; Copyright (c) 2012 Mehta.; This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Frontiers in Oncology; ISSN 2234-943X;
; v. 2; [11 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Our previous studies demonstrated that adipose-derived stem cells (ASCs) could modulate regulatory T cells (Treg) and prolong hind-limb allotransplant survival in vitro and in vivo. Dendritic cells (DCs) play a pivotal role in innate and adaptive immunity. The aim of this study is to investigate the underlying mechanism of ASCs in modulating DC maturation.
Primary Subject
Source
S001448271830569X; Available from http://dx.doi.org/10.1016/j.yexcr.2018.07.037; Copyright (c) 2018 Elsevier Inc. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Chen, Wangzhen; Chen, Meikai; Xu, Yifan; Chen, Xuerong; Zhou, Ping; Zhao, Xiaofeng; Pang, Fei; Liang, Wenqing, E-mail: chyygklwq@hotmail.com2018
AbstractAbstract
[en] Highlights: • LncRNA THOR (“Lnc-THOR”) is expressed in human osteosarcoma (OS) cells and tissues. • Lnc-THOR siRNA inhibits human OS cell survival and proliferation. • Lnc-THOR over-expression promotes human OS cell survival and proliferation. • Lnc-THOR knockout inhibits U2OS cell growth in vitro and in vivo Long non-coding RNA (LncRNA) dysregulation is associated with human osteosarcoma (OS) cell progression. Recent studies have characterized a novel but ultra-conserved LncRNA THOR (“Lnc-THOR”) as a cancer-specific LncRNA, mediating cell growth. In the current study, we show that Lnc-THOR is expressed in established and primary human OS cells. It is also detected in human OS tissues, but not in the surrounding normal bone tissues. siRNA-induced knockdown or CRSIPR/Cas9-mediated knockout Lnc-THOR significantly inhibited human OS cell survival and proliferation. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) target mRNAs, including IGF2, GLI1 and CD44, were downregulated in Lnc-THOR-silenced OS cells as well. Conversely, forced over-expression of Lnc-THOR enhanced IGF2BP1 target mRNA expression, promoting OS cell survival and proliferation. In vivo, xenograft tumors of Lnc-THOR-knockout U2OS cells grew significantly slower than the control U2OS tumors. Together, these results show that Lnc-THOR expression is essential for human OS cell growth. Lnc-THOR could be a novel therapeutic target and/or diagnosis marker for human OS.
Primary Subject
Source
S0006291X18307824; Available from http://dx.doi.org/10.1016/j.bbrc.2018.04.019; Copyright (c) 2018 Elsevier Inc. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Biochemical and Biophysical Research Communications; ISSN 0006-291X;
; CODEN BBRCA9; v. 499(4); p. 913-919

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Although implementation of temozolomide (TMZ) as a part of primary therapy for glioblastoma multiforme (GBM) has resulted in improved patient survival, the disease is still incurable. Previous studies have correlated various parameters to survival, although no single parameter has yet been identified. More studies and new approaches to identify the best and worst performing patients are therefore in great demand. This study examined 225 consecutive, non-selected GBM patients with performance status (PS) 0–2 receiving postoperative radiotherapy with concomitant and adjuvant TMZ as primary therapy. At relapse, patients with PS 0–2 were mostly treated by reoperation and/or combination with bevacizumab/irinotecan (BEV/IRI), while a few received TMZ therapy if the recurrence-free period was >6 months. Median overall survival and time to progression were 14.3 and 8.0 months, respectively. Second-line therapy indicated that reoperation and/or BEV/IRI increased patient survival compared with untreated patients and that BEV/IRI was more effective than reoperation alone. Patient age, ECOG PS, and use of corticosteroid therapy were significantly correlated with patient survival and disease progression on univariate analysis, whereas p53, epidermal growth factor receptor, and O6-methylguanine-DNA methyltransferase expression (all detected by immunohistochemistry), tumor size or multifocality, and extent of primary operation were not. A model based on age, ECOG PS, and corticosteroids use was able to predict survival probability for an individual patient. The survival of RT/TMZ-treated GBM patients can be predicted based on patient age, ECOG PS, and corticosteroid therapy status
Primary Subject
Secondary Subject
Source
Available from http://dx.doi.org/10.1186/1471-2407-13-402; Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766209; PMCID: PMC3766209; PUBLISHER-ID: 1471-2407-13-402; PMID: 24004722; OAI: oai:pubmedcentral.nih.gov:3766209; Copyright (c) 2013 Michaelsen et al.; licensee BioMed Central Ltd.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0) (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
BMC cancer (Online); ISSN 1471-2407;
; v. 13; p. 402

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) cases comprise approximately 85% of the lung cancer cases. Before the era of target therapy, platinum-based doublet chemotherapy only led to a median survival of 8–9 months and a one-year survival of 30%–40% in patients with advanced NSCLC. In July 2002, gefitinib, a small-molecule epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), was approved for the treatment of patients with advanced NSCLC in Japan. After the widespread use of gefitinib in the treatment of NSCLC, there have been many new studies regarding the association between the clinical anticancer efficacy of gefitinib and the somatic EGFR mutation status in patients with NSCLC. This article summarizes the role of EGFR mutations in lung cancer and the use of EGFR antagonists in the treatment of lung cancer and its associated adverse effects
Primary Subject
Secondary Subject
Source
Available from http://dx.doi.org/10.3390/cancers3022667; Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757436; PMCID: PMC3757436; PMID: 24212826; PUBLISHER-ID: cancers-03-02667; OAI: oai:pubmedcentral.nih.gov:3757436; Copyright (c) 2011 by the authors; licensee MDPI, Basel, Switzerland.; This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Cancers (Basel); ISSN 2072-6694;
; v. 3(2); p. 2667-2678

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
1 | 2 | 3 | Next |