Filters
Results 1 - 10 of 12934
Results 1 - 10 of 12934.
Search took: 0.038 seconds
Sort by: date | relevance |
AbstractAbstract
[en] γδ regulatory T cells are able to inhibit the activation and function of T cells involved in antigen-specific immune responses. This study aimed to investigate the potential role of γδ regulatory T cells in inhibiting anti-tumor immune responses in patients diagnosed as multiple myeloma (MM). We measured the levels of γδ T cells, the distribution and clonally amplified TCR Vγ and VδT cells in peripheral blood of healthy donors, patients recently diagnosed with MM, and MM patients in remission cohorts. In addition, we evaluated the ability of γδ regulatory T cells to inhibit the proliferation of CD4+CD25- T cells and detected the expression of immunoregulatory-associated molecules. We found that the levels of γδ regulatory T cells from the peripheral blood in patients of MM were significantly higher than those in healthy donors. Comparison of γδT regulatory cells function in MM and healthy donors showed similarly inhibitory effects on the proliferation of T cells. Additionally, TLR8 expression level increased significantly in MM patients compared to healthy donors, while the expression levels of Foxp3, CD25, CTLA4, GITR, GATA3 and Tbet in MM patients and healthy donors showed no significant difference. Taken together, our study reveals the potential role of γδ regulatory T cells in inhibiting anti-tumor immune responses in MM patients.
Primary Subject
Source
S0006-291X(16)31784-3; Available from http://dx.doi.org/10.1016/j.bbrc.2016.10.098; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Biochemical and Biophysical Research Communications; ISSN 0006-291X;
; CODEN BBRCA9; v. 480(4); p. 594-601

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD"+ biosynthesis from nicotinamide, is one of the major factors regulating cancer cells metabolism and is considered a promising target for treating cancer. The prototypical NAMPT inhibitor FK866 effectively lowers NAD"+ levels in cancer cells, reducing the activity of NAD"+-dependent enzymes, lowering intracellular ATP, and promoting cell death. We show that FK866 induces a translational arrest in leukemia cells through inhibition of MTOR/4EBP1 signaling and of the initiation factors EIF4E and EIF2A. Specifically, treatment with FK866 is shown to induce 5′AMP-activated protein kinase (AMPK) activation, which, together with EIF2A phosphorylation, is responsible for the inhibition of protein synthesis. Notably, such an effect was also observed in patients’ derived primary leukemia cells including T-cell Acute Lymphoblastic Leukemia. Jurkat cells in which AMPK or LKB1 expression was silenced or in which a non-phosphorylatable EIF2A mutant was ectopically expressed showed enhanced sensitivity to the NAMPT inhibitor, confirming a key role for the LKB1-AMPK-EIF2A axis in cell fate determination in response to energetic stress via NAD"+ depletion. We identified EIF2A phosphorylation as a novel early molecular event occurring in response to NAMPT inhibition and mediating protein synthesis arrest. In addition, our data suggest that tumors exhibiting an impaired LBK1- AMPK- EIF2A response may be especially susceptible to NAMPT inhibitors and thus become an elective indication for this type of agents. The online version of this article (doi:10.1186/s12885-015-1845-1) contains supplementary material, which is available to authorized users
Primary Subject
Source
Available from http://dx.doi.org/10.1186/s12885-015-1845-1; Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636066; PMCID: PMC4636066; PMID: 26542945; PUBLISHER-ID: 1845; OAI: oai:pubmedcentral.nih.gov:4636066; Copyright (c) Zucal et al. 2015; Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
BMC cancer (Online); ISSN 1471-2407;
; v. 15; vp

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Wang, Dan; Shi, Liuyan; Xin, Wei; Xu, Jiancheng; Xu, Jing; Li, Qi; Xu, Zhi; Wang, Jianchun; Wang, Guansong; Yao, Wei; He, Binfeng; Yang, Yu; Hu, Mingdong, E-mail: humingdongxq@126.com2017
AbstractAbstract
[en] Peroxisome proliferator-activated receptor gamma (PPARγ) and miR-124 have been reported to play important roles in regulation of inflammation. However, the underlying anti-inflammatory mechanisms remain not well understood. In the present study, we demonstrated that the expression level of PPARγ is positively correlated with that of miR-124 in patients with sepsis. Activation of PPARγ upregulates miR-124 and in turn inhibits miR-124 target gene. PPARγ bound directly to PPRE in the miR-124 promoter region, and enhanced the promoter transcriptional activity. PPARγ-induced miR-124 is involved in the suppression of pro-inflammatory cytokine in vitro and in vivo. These results suggest that PPARγ-induced miR-124 inhibits the production of pro-inflammatory cytokines is a novel PPARγ anti-inflammatory mechanism and also indicate that miR-124 may be a potential therapeutic target for the treatment of inflammatory diseases. - Highlights: • The expression level of PPARγ is positively correlated with that of miR-124 in patients with sepsis. • PPARγ upregulates miR-124 and in turn inhibits miR-124 target gene. • PPARγ promotes miR-124 transcription through binding to miR-124 promoter region. • Inhibition of miR-124 attenuates the PPARγ-mediated suppression of proinflammatory cytokines in vitro. • PPARγ-induced miR-124 is involved in the suppression of pro-inflammatory cytokine in vivo.
Primary Subject
Source
S0006-291X(17)30576-4; Available from http://dx.doi.org/10.1016/j.bbrc.2017.03.106; Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Biochemical and Biophysical Research Communications; ISSN 0006-291X;
; CODEN BBRCA9; v. 486(3); p. 726-731

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Gao, Fumei; Hu, Wenxin; Li, Yu; Shen, Huan; Hu, Jianying, E-mail: hujy@urban.pku.edu.cn2017
AbstractAbstract
[en] Concerns over the adverse reproductive outcomes in human have been raised, more evidence including the underlying mechanism are required. Since extravillous trophoblast (EVT) invasion is an important physiological step during early development, the effects of mono-2-ethylhexyl phthalate (MEHP), the bioactive metabolite of DEHP, on EVT invasion were investigated using Matrigel-coated transwell chambers and cell line HTR-8/SVneo. In the transwell-based invasive assay, MEHP exposure inhibited EVT invasion as judged by decreased invasion index. Further analysis showed that MEHP exposure significantly inhibited the activity of matrix metalloproteinase-9 (MMP-9), which is an important positive regulator of EVT invasion. Meanwhile, the protein levels of tissue inhibitor matrix metalloproteinase-1 (TIMP-1), one key negative regulator of EVT invasion, were upregulated by MEHP treatment. Finally, inactivation of PPARγ pathway by either PPARγ inhibitors or PPARγ shRNA knockdown rescued the MEHP-induced inhibited invasion of HTR-8/SVneo cells, which is accompanied by the recovery of inhibited MMP-9 expression. The present study provides the evidence that MEHP exposure inhibits trophoblast invasion via PPARγ at concentrations comparable to those found in humans, which provides an insight in understanding the mechanisms of DEHP-associated early pregnancy loss. - Highlights: • MEHP inhibits HTR-8/SVneo cell invasion. • MEHP exposure imbalanced the expression of MMP-9/TIMP-1 in HTR-8/SVneo cells. • This effect of MEHP is mediated via the PPARγ pathway.
Primary Subject
Source
S0041-008X(17)30163-1; Available from http://dx.doi.org/10.1016/j.taap.2017.04.014; Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Induction of type I interferon (IFN-α/β) is an early antiviral response of the host, and porcine reproductive and respiratory syndrome virus (PRRSV) has been reported to downregulate the IFN response during infection in cells and pigs. We report that the PRRSV nonstructural protein 1α (Nsp1α) subunit of Nsp1 is a nuclear-cytoplasmic protein distributed to the nucleus and contains a strong suppressive activity for IFN-β production that is mediated through the retinoic acid-inducible gene I (RIG-I) signaling pathway. Nsp1α suppressed the activation of nuclear factor (NF)-κB when stimulated with dsRNA or tumor necrosis factor (TNF)-α, and NF-κB suppression was RIG-I-dependent. The suppression of NF-κB activation was associated with the poor production of IFN-β during PRRSV infection. The C-terminal 14 amino acids of the Nsp1α subunit were critical in maintaining immunosuppressive activity of Nsp1α for both IFN-β and NF-κB, suggesting that the newly identified zinc finger configuration comprising of Met180 may be crucial for inhibitory activities. Nsp1α inhibited IκB phosphorylation and as a consequence NF-κB translocation to the nucleus was blocked, leading to the inhibition of NF-κB stimulated gene expression. Our results suggest that PRRSV Nsp1α is a multifunctional nuclear protein participating in the modulation of the host IFN system.
Primary Subject
Source
S0042-6822(10)00555-6; Available from http://dx.doi.org/10.1016/j.virol.2010.08.025; Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Jamiruddin, Mohd Raeed; Kaitsuka, Taku; Hakim, Farzana; Fujimura, Atsushi; Wei, Fan-Yan; Saitoh, Hisato; Tomizawa, Kazuhito, E-mail: tomikt@kumamoto-u.ac.jp2016
AbstractAbstract
[en] Cancer cells overcome cellular senescence by activating the telomere maintenance mechanism, which can be either through telomerase or the alternative lengthening of telomeres (ALT). Being exclusive to cancer cells, targeting ALT is a more promising route for the development of drugs against cancer. The histone deacetylase (HDAC) family plays significant roles in various cellular processes. In addition to the regulation of gene expression, HDACs are also known to directly interact with many proteins. We focused on this family, and found that HDAC9 was up-regulated in ALT-positive cells. In ALT-positive cells treated with HDAC9 siRNA, there was a decrease in the telomere replicative capacity, which was evident from the C-circles assay. Furthermore, the formation of ALT-associated promyelocytic leukemia (PML) nuclear bodies (APBs) was inhibited by HDAC9 knockdown. Based on this study, it is suggested that HDAC9 regulates the formation of APBs and could be a candidate for the target of ALT-cancer therapy. - Highlights: • HDAC9 is highly expressed in ALT-positive cells. • Knockdown of HDAC9 inhibits C-circle abundance in ALT-positive cells. • Knockdown of HDAC9 inhibits APBs formation in ALT-positive cells.
Primary Subject
Source
S0006-291X(16)31881-2; Available from http://dx.doi.org/10.1016/j.bbrc.2016.11.026; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Biochemical and Biophysical Research Communications; ISSN 0006-291X;
; CODEN BBRCA9; v. 481(1-2); p. 25-30

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Obatoclax is a clinical stage drug candidate that has been proposed to target and inhibit prosurvival members of the Bcl-2 family, and thereby contribute to cancer cell lethality. The insolubility of this compound, however, has precluded the use of many classical drug-target interaction assays for its study. Thus, a direct demonstration of the proposed mechanism of action, and preferences for individual Bcl-2 family members, remain to be established. Employing modified proteins and lipids, we recapitulated the constitutive association and topology of mitochondrial outer membrane Mcl-1 and Bak in synthetic large unilamellar liposomes, and measured bakdependent bilayer permeability. Additionally, cellular and tumor models, dependent on Mcl-1 for survival, were employed. We show that regulation of bilayer permeabilization by the tBid – Mcl-1 - Bak axis closely resemblesthe tBid - Bcl-XL - Bax model. Obatoclax rapidly and completely partitioned into liposomal lipid but also rapidly exchanged between liposome particles. In this system, obatoclax was found to be a direct and potent antagonist of liposome-bound Mcl-1 but not of liposome-bound Bcl-XL, and did not directly influence Bak. A 2.5 molar excess of obatoclax relative to Mcl-1 overcame Mcl-1-mediated inhibition of tBid-Bak activation. Similar results were found for induction of Bak oligomers by Bim. Obatoclax exhibited potent lethality in a cellmodel dependent on Mcl-1 for viability but not in cells dependent on Bcl-XL. Molecular modeling predicts that the 3-methoxy moiety of obatoclax penetrates into the P2 pocket of the BH3 binding site of Mcl-1. A desmethoxy derivative of obatoclax failed to inhibit Mcl-1 in proteoliposomes and did not kill cells whose survival depends on Mcl-1. Systemic treatment of mice bearing Tsc2"+"/"- Em-myc lymphomas (whose cells depend on Mcl-1 for survival) with obatoclax conferred a survival advantage compared to vehicle alone (median 31 days vs 22 days, respectively; p=0.003). In an Akt-lymphoma mouse model, the anti-tumor effects of obatoclax synergized with doxorubicin. Finally, treatment of the multiple myeloma KMS11 cell model (dependent on Mcl-1 for survival) with dexamethasone induced Bim and Bim-dependent lethality. As predicted for an Mcl-1 antagonist, obatoclax and dexamethasone were synergistic in this model. Taken together, these findings indicate that obatoclax is a potent antagonist of membranerestricted Mcl-1. Obatoclax represents an attractive chemical series to generate second generation Mcl-1 inhibitors
Primary Subject
Secondary Subject
Source
Available from http://dx.doi.org/10.1186/s12885-015-1582-5; Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522062; PMCID: PMC4522062; PMID: 26231047; PUBLISHER-ID: 1582; OAI: oai:pubmedcentral.nih.gov:4522062; Copyright (c) Nguyen et al. 2015; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
BMC cancer (Online); ISSN 1471-2407;
; v. 15; vp

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Yamaguchi, Hirohito; Hsu, Jennifer L.; Hung, Mien-Chie, E-mail: mhung@mdanderson.org2012
AbstractAbstract
[en] The ubiquitin–proteasome system is essential for multiple physiological processes via selective degradation of target proteins and has been shown to plays a critical role in human cancer. Activation of oncogenic factors and inhibition of tumor suppressors have been shown to be essential for cancer development, and protein ubiquitination has been linked to the regulation of oncogenic factors and tumor suppressors. Three kinases, AKT, extracellular signal-regulated kinase, and IκB kinase, we refer to as oncokinases, are activated in multiple human cancers. We and others have identified several key downstream targets that are commonly regulated by these oncokinases, some of which are regulated directly or indirectly via ubiquitin-mediated proteasome degradation, including FOXO3, β-catenin, myeloid cell leukemia-1, and Snail. In this review, we summarize these findings from our and other groups and discuss potential future studies and applications in the clinic.
Primary Subject
Source
Available from http://dx.doi.org/10.3389/fonc.2012.00015; Copyright (c) 2012 Yamaguchi, Hsu and Hung.; This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Frontiers in Oncology; ISSN 2234-943X;
; v. 2; [9 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Cui, Lulu; Bi, Jiacheng; Yan, Dehong; Ye, Xiufeng; Zheng, Mingxing; Yu, Guang; Wan, Xiaochun, E-mail: ly65401@sina.cn, E-mail: xc.wan@siat.ac.cn2017
AbstractAbstract
[en] IgE is a key effector molecule in atopic diseases; however, the regulation mechanisms of IgE production in IgE B cells remain poorly understood. In the present study, we demonstrate that JSI-124 (cucurbitacin I), a selective STAT3 inhibitor, selectively inhibits production of IgE by a human IgE B cell line, CRL-8033 cells, while does not affect the IgG production by IgG B cell lines. In the aspect of molecular mechanism, we found that Igλ, but not Ighe, gene expression was suppressed by JSI-124. The above effects of JSI-124 were not mediated by affecting cellular proliferation or apoptosis. Furthermore, multiple B cell differentiation-related genes expression was not significantly affected by JSI-124. Taken together, we demonstrate a potential strategy of therapeutically suppressing IgE production without affecting IgG production in atopic patients. - Highlights: • JSI-124 inhibits IgE production in an IgE B cell line, CRL-8033 cells. • JSI-124 does not affect IgG production by IgG B cell lines. • JSI-124 inhibits IgE production mainly by suppressing transcription of Igλ.
Primary Subject
Source
S0006-291X(16)32129-5; Available from http://dx.doi.org/10.1016/j.bbrc.2016.12.085; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Biochemical and Biophysical Research Communications; ISSN 0006-291X;
; CODEN BBRCA9; v. 483(1); p. 669-673

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Experiments have been carried out with varieties grown from seed and sown onions, the former playing a decisive role in the onion production in Hungary. The results of pilot plant experiments proved the favourable and at the same time loss-decreasing effect of irradiation. During drying of onions treated and stored on large scale the yield-increasing effect of irradiation has been proved. In case of varieties grown from sown onions the saving of raw materials was almost 24 and 7%, respectively. In case of varieties grown from seed onions the yield-increase due to irradiation could not be observed each year. The decisive advantage of radiation treatment is direct yield-increase. However, the investigations of dried onions proved that the characteristics of the still not visible sprouts were affected favourably by irradiation, too. The consumer response to the irradiated onions has been favourable for several years. Though the consumers had a free choice, they distinctly insisted on buying irradiated onions on the basis of their favourable experience in using such onions. In order to utilize the results, an equipment has been designed for the economic operation of the onion-irradiating plants. (P.J.)
Original Title
Feluzemi kiserletek a voroshagyma kihajtasanak gatlasara ionizalo sugarzassal
Primary Subject
Secondary Subject
Source
7 figs.; 21 refs.
Record Type
Journal Article
Journal
Konzerv- es Paprikaipar; ISSN 0452-5132;
; (no.1); p. 12-16

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | 3 | Next |