Filters
Results 1 - 10 of 3822
Results 1 - 10 of 3822.
Search took: 0.109 seconds
Sort by: date | relevance |
Espindola, M.L.; Espindola, O.; Teixeira, N.L.
Proceedings of the 5. Meeting of Physicists from Northeast - Abstracts1987
Proceedings of the 5. Meeting of Physicists from Northeast - Abstracts1987
AbstractAbstract
[en] Published in summary form only
Original Title
Hamiltonizacoes alternativas para teorias de campos
Primary Subject
Source
Rio Grande do Norte Univ., Natal (Brazil). Dept. de Fisica; 66 p; 1987; p. 23; 5. Meeting of Physicists from Northeast; Natal, RN (Brazil); 12-13 Nov 1987
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
LanguageLanguage
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Kaspirovich, I, E-mail: aspirovich.ivan@mail.ru2018
AbstractAbstract
[en] In this paper a problem of constraint stabilization of a two-wheeled sleigh is considered. This problem is solved with the help of the Chaplygin’s approach, in which Lagrange equations of the second kind are modified with respect to the nonholonomic constraints. For the obtained equations we define the functions of reactions forces of constraints with respect to their stabilization. During the numerical integration some of the stabilization parameters are defining at each step of the summation. This gives an advantage in comparison with the classical stabilization approach. (paper)
Primary Subject
Secondary Subject
Source
FAPM - 2017: International Meeting on Fundamental and Applied Problems of Mechanics; Moscow (Russian Federation); 24-27 Oct 2017; Available from http://dx.doi.org/10.1088/1757-899X/468/1/012037; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
IOP Conference Series. Materials Science and Engineering (Online); ISSN 1757-899X;
; v. 468(1); [6 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Sun Yi; Chen Ben-Yong; Fu Jing-Li, E-mail: sqfujingli@163.com2014
AbstractAbstract
[en] The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is established, and the fractional Lagrange equations are obtained by virtue of the d'Alembert—Lagrange principle with fractional derivatives. As the Lie symmetry theorem is based on the invariance of differential equations under infinitesimal transformations, by introducing the differential operator of infinitesimal generators, the determining equations are obtained. Furthermore, the limit equations, the additional restriction equations, the structural equations, and the conserved quantity of Lie symmetry are acquired. An example is presented to illustrate the application of results. (general)
Primary Subject
Secondary Subject
Source
Available from http://dx.doi.org/10.1088/1674-1056/23/11/110201; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Chinese Physics. B; ISSN 1674-1056;
; v. 23(11); [7 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Primary Subject
Record Type
Journal Article
Journal
Journal of Quantitative Spectroscopy and Radiative Transfer; v. 15(5); p. 385-387
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Wahyuni, S; Rosyid, M F; Dwandaru, W S B, E-mail: yuniblr@yahoo.com, E-mail: wipsarian@yahoo.com, E-mail: farchani@ugm.ac.id2014
AbstractAbstract
[en] The energy functional of Thomas-Fermi-Dirac-von Weizsäcker model with external potential is studied. The minimizer for the functional is investigated. Furthermore, the value and some properties of the minimizer are estimated from the functional without solving the associate Euler-Lagrange equation
Primary Subject
Source
Conference of Theoretical Physics and Nonlinear Phenomena (CTPNP) 2014: From Universe to String's Scale; Surakarta (Indonesia); 15 Feb 2014; Available from http://dx.doi.org/10.1088/1742-6596/539/1/012015; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
Journal of Physics. Conference Series (Online); ISSN 1742-6596;
; v. 539(1); [4 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] For a wide class of Lagrangian systems it is shown rigorously that the conventional formulation of Noether's theorem provides a bijective map from the set of equivalence classes of Noether's symmetries onto the set of equivalence classes of conserved currents. The author further discusses if Noether's theorem is generalized in a significant way by several formulations proposed in this decade. (Auth.)
Primary Subject
Record Type
Journal Article
Journal
Letters in Mathematical Physics; ISSN 0377-9017;
; v. 3(5); p. 419-424

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] In this paper, we present a new method to construct the conservation laws for relativistic mechanical systems by finding corresponding integrating factors. First, the Lagrange equations of relativistic mechanical systems are established, and the definition of integrating factors of the systems is given; second, the necessary conditions for the existence of conserved quantities of the relativistic mechanical systems are studied in detail, and the relation between the conservation laws and the integrating factors of the systems is obtained and the generalized Killing equations for the determination of the integrating factors are given; finally, the conservation theorem and its inverse for the systems are established, and an example is given to illustrate the application of the results.
Primary Subject
Source
Available from http://dx.doi.org/10.1088/6102/44/2/231; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Communications in Theoretical Physics; ISSN 0253-6102;
; v. 44(2); p. 231-234

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] I prove that the necessary and sufficient condition for two Lagrangian densities L1(psi/sup A/;psi/sup A//sub ,alpha/) and L2(psi/sup A/;psi/sup A//sub ,alpha/) to have exactly the same Euler-Lagrange derivatives is that their difference Δ(psi/sup A/;psi/sup A//sub ,alpha/) be the divergence of ω/sup μ/(psi/sup A/;psi/sup A//sub ,alpha/;x/sup μ/) with a given dependence on psi/sup A//sub ,alpha/. The main point is that ω/sup μ/ depends on psi/sup A//sub ,alpha/ but Δ does not depend on second derivatives of the field psi/sup A/. Therefore, the function Δ need not be linear in psi/sup A//sub ,alpha/
Primary Subject
Record Type
Journal Article
Journal
Physical Review. D, Particles Fields; ISSN 0556-2821;
; v. 27(2); p. 451-453

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The French electricity generation system comprises several dozens nuclear units (mostly Pressurized Water Reactors), coal and oil-fired units, and several hundreds smaller hydro units, with a total capacity of about 90 000 MW. The various optimal operation problems of that system, whether they cover a few hours (unit scheduling), or several years (unit refuelling), have many characteristics in common: - unit dynamics are decoupled, - technical constraints of one unit are complex, and their formulation sometimes requires integer variables, - there are only a little number of coupling constraints (load-demand equilibrium...). Decomposition-coordination methods (sometimes called Lagrangian relaxation) appear particularly adequate to solve such problems: they make it possible to handle very precisely the technical constraints of each unit, at the decomposition level (each local problem being solved by dynamic programming or linear programming). Global optimization is achieved at the coordination level
[fr]
Le parc de production d'electricite d'EDF comprend plusieurs dizaines de tranches nucleaires (essentiellement des reacteurs a eau pressurisee), des tranches au charbon et au fioul, plusieurs centaines de centrales hydroelectriques, de taille plus modeste. La puissance totale du systeme est de l'ordre de 90 000 MW. Les differents problemes d'exploitation de ce systeme, qu'ils couvrent quelques heures (etablissement des planning de marche), ou plusieurs annees (rechargement des unites en combustible) ont plusieurs caracteristiques en commun: - les dynamiques des unites sont decouplees, - les contraintes techniques d'une unite sont complexes, et leur formulation fait parfois intervenir des variables entieres, - il n'y a qu'un petit nombre de contraintes couplantes (equilibre production-consommation...). Les methodes de decomposition-coordination (parfois appelees relaxation lagrangienne) sont particulierement adaptees a la resolution de tels problemes: elles permettent de prendre en compte tres precisement les contraintes techniques de chaque unite au niveau de decomposition (chaque probleme local etant resolu par programmation dynamique ou programmation lineaire). Et l'optimisation globale est assuree par le niveau de coordinationOriginal Title
Les methodes de decomposition par dualite pour l'optimisation de la gestion previsionnelle du parc de production d'EDF
Primary Subject
Record Type
Journal Article
Journal
Bulletin de la Direction des Etudes et Recherches, Serie C; ISSN 0013-4511;
; CODEN EDBCA; (no.4); p. 65-78

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] We deal with the question of what it means to define a minimal coupling prescription in presence of torsion and/or non-metricity, carefully explaining while the naive substitution ∂→∇ introduces extra couplings between the matter fields and the connection that can be regarded as non-minimal in presence of torsion and/or non-metricity. We will also investigate whether minimal coupling prescriptions at the level of the action (MCPL) or at the level of field equations (MCPF) lead to different dynamics. To that end, we will first write the Euler–Lagrange equations for matter fields in terms of the covariant derivatives of a general non-Riemannian space, and derivate the form of the associated Noether currents and charges. Then we will see that if the minimal coupling prescriptions is applied as we discuss, for spin 0 and 1 fields the results of MCPL and MCPF are equivalent, while for spin 1/2 fields there is a difference if one applies the MCPF or the MCPL, since the former leads to charge violation.
Primary Subject
Source
Available from: http://dx.doi.org/10.1140/epjc/s10052-020-8330-y; AID: 728
Record Type
Journal Article
Journal
European Physical Journal. C, Particles and Fields (Online); ISSN 1434-6052;
; CODEN EPCFFB; v. 80(8); p. 1-17

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | 3 | Next |