Filters
Results 1 - 10 of 3539
Results 1 - 10 of 3539.
Search took: 0.033 seconds
Sort by: date | relevance |
Mourre, Eric.
Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique1978
Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique1978
AbstractAbstract
[en] A new method has been introduced for proving the asymptotic completeness in the case of potential scattering. This method was founded on geometrical concepts. A link is established between this method and the spectral transformation method
[fr]
On a introduit une nouvelle methode pour demontrer la completude asymptotique dans le cas de la diffusion par un potentiel. Cete methode etait fondee sur des notions geometriques. On etablit un lien entre cette methode et la methode des transformations spectralesOriginal Title
Connexion entre la methode geometrique et la methode des transformations spectrales dans la theorie de la diffusion
Primary Subject
Source
Jun 1978; 8 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] A method of forming approximate representations for propagators with external field dependence is suggested and discussed in the context of potential scattering. An integro-differential equation in D+1 variables, where D represents the dimensionality of Euclidian space-time, is replaced by a Volterra equation in one variable. Approximate solutions to the latter provide a generalization of the Bloch-Nordsieck representation, containing the effects of all powers of hard-potential interactions, each modified by a characteristic soft-potential dependence
[fr]
Une solution approximative pour les propagateurs dans un champ exterieur est suggeree et discutee dans le contexte de la diffusion par un potentiel. Une equation integro-differentielle a D+1 variables, ou D represente la dimension de l'espace-temps Euclidien, est remplacee par une equation de type Volterra a une dimension. Les solutions approximatives de cette derniere fournissent une representation qui generalise celle de Bloch-Nordsieck; elle contient les effets de toutes les puissances des interactions de potentiel dur, chacune de ces puissances etant modifiee par un terme qui depend de facon caracteristique des interactions de potentiel mouOriginal Title
Representations approximatives de propagateurs dans un champ exterieur
Primary Subject
Record Type
Journal Article
Journal
Journal de Physique. Lettres; ISSN 0302-072X;
; v. 40(5); p. L.89-L.91

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The present paper is devoted to the scattering theory of a class of continuum Schrödinger operators with deterministic sparse potentials. We first establish the limiting absorption principle for both modified free resolvents and modified perturbed resolvents. This actually is a weak form of the classical limiting absorption principle. We then prove the existence and completeness of local wave operators, which, in particular, imply the existence of wave operators. Under additional assumptions on the sparse potential, we prove the completeness of wave operators. In the context of continuum Schrödinger operators with sparse potentials, this paper gives the first proof of the completeness of wave operators
Primary Subject
Source
(c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Let V element-of Lc∞ (Rn) be a real-valued potential, n ≥ 3 odd. The scattering matrix, Sv(A), corresponding to V extends to be a meromorphic function in C. Our normalization is that P, the physical half plane, is the open lower half plane, C-. Thus, Sv(λ) only has a finite number of poles in P and they correspond to the bound states of the Hamiltonian Δ + V (Δ is the positive Laplacian). In Zworski has shown that the number of scattering poles n(r) in a disc of radius r is bounded by C(r + 1)n, and in he has given similar lower bounds for n(r) for certain radial potentials. The question of the existence of pure imaginary scattering poles was investigated by Lax and Phillips for both obstacle and potential scattering. In the case of obstacle scattering they showed that the number N(s) of pure imaginary scattering poles of absolute value less than s satisfies C1 s2< N(s) for n = 3 for some constant C1 > 0, and there is an analogous upper bound if the obstacle is star-shaped. They also proved that much of the machinery can be translated into the setting of potential scattering by non-negative potentials. This reduces the problem of obtaining lower bounds for N(s) to finding the corresponding bounds when V is tile characteristic function of a ball. In this paper we make the simple observation that their proof can be modified to accommodate non-positive potentials, and we prove that if V or -V is bounded below by a positive multiple of the characteristic function of a ball, then for some C, C' > 0
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Communications in Partial Differential Equations; ISSN 0360-5302;
; CODEN CPDIDZ; v. 22(1-2); p. 185-194

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] We consider the semi-classical approximation of time-delay operators in potential scattering theory. We show that in non-trapping energy interval, Narnhofer's time-delay operator admits a semi-classical expansion in terms of pseudo-differential operators of class T11. The classical limit for Eisenbud-Wigner time-delay operator is also given
[fr]
On considere ici l'approximation semi-classique d'operateurs de temps-retard dans la theorie de la diffusion par un potentiel. On montre que dans un intervalle d'energie non absorbante, l'operateur de temps-retard de Narnhofer admet un developpement semi-classique en termes des operateurs pseudo-differentiels de classe T11. La limite classique pour l'operateur de temps-retard d'Eisenbud-Wigner est aussi donneeOriginal Title
Operateurs de temps-retard dans la theorie de la diffusion
Primary Subject
Record Type
Journal Article
Journal
Comptes Rendus des Seances de l'Academie des Sciences. Serie 1; CODEN CHASA; v. 301(20); p. 907-910
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] In this note we want to remedy the situation by providing a simple and systematic generalization of the eikonal equation as a general means to study high-energy scattering. (Author)
Primary Subject
Record Type
Journal Article
Journal
Journal of the Korean Physical Society; ISSN 0374-4884;
; v. 17(4); p. 308-315

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Time-dependent schroedinger theory of potential scattering is numerically investigated in one-dimensional space. We have studied simple quantum mechanical systems by general algorithm on partial differential equation. Quantum scattering considered in this paper includes step, rectangular barrier, square-well, gaussian barrier and tanh-type barrier potentials. Results can be displayed on personal computor graphically. (Author)
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The Schroedinger operator in L2(Rsup(n)) with potential V=divergence of W is considered. W is a real Rsup(n) valued function such that (1) the local singularities of W2 are controlled in a suitable sense by a kinetic energy (2) W tends to zero at infinity faster than r-1. The Hamiltonian is defined by a method of quadratic forms and the usual results of scattering theory are derived; the negative spectrum is discrete and finite, the absolutely continuous spectrum is [0, infinite), the continuous singular spectrum is empty, the wave operators exist and are asymptotically complete
[fr]
On considere l'operateur de Schroedinger en L2 (Rsup(n)) avec potentiel V=divergence de W ou W est une fonction reelle de valeur Rsup(n) telle que 1) les singularites locales de W2 sont controlees dans un sens souhaitable par l'energie cinetique; 2) W tend de zero a l'infini plus vite que r-1. On definit l'hamiltonien par une methode des formes quadratiques et on derive les resultats usuels de la theorie de la diffusion: le spectre negatif est discret et fini, le spectre absolument continu est [0, infini), le spectre singulier continu est vide, les operateurs d'onde existent et sont asymptotiquement completsPrimary Subject
Record Type
Journal Article
Journal
Ann. Inst. Henri Poincare, Sect. A; v. 24(1); p. 17-29
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Primary Subject
Record Type
Journal Article
Journal
J. Math. Phys. (N.Y.); v. 16(2); p. 391-393
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] An energy-independent optical potential is derived by projection operator techniques. Its properties are investigated in a simple model. (author)
Primary Subject
Source
4. Oaxtepec Symposium on Nuclear Physics; Oaxtepec, Morelos, Mexico; 5 - 7 Jan 1981
Record Type
Journal Article
Literature Type
Conference
Journal
Notas de Fisica; v. 4(1); p. 189-204
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | 3 | Next |