Filters
Results 1 - 10 of 10022
Results 1 - 10 of 10022.
Search took: 0.039 seconds
Sort by: date | relevance |
Song, Shufang; Wang, Lu, E-mail: shufangsong@nwpu.edu.cn, E-mail: louisewanglu@gmail.com2017
AbstractAbstract
[en] Global sensitivity analysis (GSA) is a very useful tool to evaluate the influence of input variables in the whole distribution range. Sobol' method is the most commonly used among variance-based methods, which are efficient and popular GSA techniques. High dimensional model representation (HDMR) is a popular way to compute Sobol' indices, however, its drawbacks cannot be ignored. We show that modified GMDH-NN algorithm can calculate coefficients of metamodel efficiently, so this paper aims at combining it with HDMR and proposes GMDH-HDMR method. The new method shows higher precision and faster convergent rate. Several numerical and engineering examples are used to confirm its advantages. - Highlights: • The GMDH-NN is improved to construct the explicit polynomial model of optimal complexity by self-organization. • The paper aims at combining improved GMDH-NN with HDMR expansions and using it to compute Sobol' indices directly. • The method can be applied in uniform, normal and exponential distribution by using suitable orthogonal polynomials. • Engineering examples, e.g., electronic circuit models can be solved by the presented method.
Primary Subject
Source
S0021-9991(17)30535-1; Available from http://dx.doi.org/10.1016/j.jcp.2017.07.027; Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Borras, Josep M.; Barton, Michael; Grau, Cai; Corral, Julieta; Verhoeven, Rob; Lemmens, Valery; Eycken, Liesbet van; Henau, Kris; Primic-Zakelj, Maja; Strojan, Primoz; Trojanowski, Maciej; Dyzmann-Sroka, Agnieszka; Kubiak, Anna; Gasparotto, Chiara; Defourny, Noemie; Malicki, Julian; Dunscombe, Peter; Coffey, Mary; Lievens, Yolande, E-mail: jmborras@iconcologia.net2015
AbstractAbstract
[en] Background and purpose: The impact of differences in the distribution of major cancer sites and stages at diagnosis among 4 European countries on the optimal utilization proportion (OUP) of patients who should receive external beam radiotherapy was assessed within the framework of the ESTRO-HERO project. Materials and methods: Data from Australian Collaboration for Cancer Outcomes Research and Evaluation (CCORE) were used. Population based stages at diagnosis from the cancer registries of Belgium, Slovenia, the Greater Poland region of Poland, and The Netherlands were used to assess the OUP for each country. A sensitivity analysis was carried out. Results: The overall OUP by country varied from the lowest of 48.3% in Australia to the highest of 53.4% in Poland; among European countries the variation was limited to 3%. Cancer site specific OUPs showed differences according to the variability in stage at diagnosis across countries. The most important impact on the OUP by country was due to changes in relative frequency of tumours rather than stage at diagnosis. Conclusions: This methodology can be adapted using European data, thus facilitating the planning of resources required to cope with the demand for radiotherapy in Europe, taking into account the national variability in cancer incidence
Primary Subject
Source
S0167-8140(15)00218-2; Available from http://dx.doi.org/10.1016/j.radonc.2015.04.021; Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Flach, Greg; Wohlwend, Jen
Savannah River Site (SRS), Aiken, SC (United States). Funding organisation: USDOE (United States)2017
Savannah River Site (SRS), Aiken, SC (United States). Funding organisation: USDOE (United States)2017
AbstractAbstract
[en] This memorandum builds upon Section 3.8 of SRNL (2016) and Flach (2017) by defining key error analysis, uncertainty quantification, and sensitivity analysis concepts and terms, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision.
Primary Subject
Source
2 Oct 2017; 8 p; OSTIID--1407926; AC09-08SR22470; Available from http://sti.srs.gov/fulltext/SRNL-STI-2017-00518.pdf; PURL: http://www.osti.gov/servlets/purl/1407926/
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Chen, Chung Ho, E-mail: chench@stust.edu.tw2019
AbstractAbstract
[en] In this study, the author proposes a jointly setting model for determining the process mean and economic manufacturing quantity (EMQ) under the machine breakdown and deteriorating production process. The system addresses the corrective maintenance, preventive maintenance, and allowable shortage. The quality loss of conforming product is considered and Taguchi’s asymmetric quadratic quality loss function is used for evaluating the product quality. The optimal process mean and economic manufacturing quantity are jointly determined by minimizing the total expected cost of product per unit time including the set-up cost, holding cost, corrective maintenance cost, preventive maintenance cost, shortage cost. A solution procedure is devised to obtain the optimal solution and the sensitivity analysis of key parameters is conducted to investigate the effect on the optimal solution. (paper)
Primary Subject
Source
International Multi-Conference on Engineering and Technology Innovation; Taoyuan, Taiwan (China); 2-6 Nov 2018; Available from http://dx.doi.org/10.1088/1757-899X/658/1/012012; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
IOP Conference Series. Materials Science and Engineering (Online); ISSN 1757-899X;
; v. 658(1); [9 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Navarro Jimenez, M.; Le Maître, O. P.; University Paris-Saclay, Gif-sur-Yvette; Knio, O. M.; Duke University, Durham, NC
Duke University, Durham, NC (United States). Funding organisation: USDOE Office of Science - SC, Advanced Scientific Computing Research (ASCR) (SC-21) (United States); King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)2016
Duke University, Durham, NC (United States). Funding organisation: USDOE Office of Science - SC, Advanced Scientific Computing Research (ASCR) (SC-21) (United States); King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)2016
AbstractAbstract
[en] Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. Here, a sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
Primary Subject
Source
OSTIID--1423885; SC0008789; Available from https://www.osti.gov/pages/servlets/purl/1423885; DOE Accepted Manuscript full text, or the publishers Best Available Version will be available free of charge after the embargo period; arXiv:1711.02047
Record Type
Journal Article
Journal
Journal of Chemical Physics; ISSN 0021-9606;
; v. 145(24); vp

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] The development of the internet, adds flexibility of supply chain with an online channel for the product distribution. In this research, the dual channel supply chain model is used on the imperfect production process by notice into carbon capacity regulation and also delivery lead time. We construct the model to maximize the system profit of one manufacturer and one retailer by considering a carbon emissions capacity constrain from the government. Furthermore, we determine the optimal solution with Karush Kuhn Tucker condition. Based on sensitivity analysis maximal profit is obtained when probability of defective product, delivery lead time sensitivity, and carbon emissions are minimal. (paper)
Primary Subject
Source
6. International Conference on Research, Implementation, and Education of Mathematics and Science; Yogyakarta (Indonesia); 12-13 Jul 2019; Available from http://dx.doi.org/10.1088/1742-6596/1397/1/012059; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
Journal of Physics. Conference Series (Online); ISSN 1742-6596;
; v. 1397(1); [7 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Allaire, Douglas L.; Willcox, Karen E., E-mail: dallaire@mit.edu2012
AbstractAbstract
[en] Among the many uses for sensitivity analysis is factor prioritization—that is, the determination of which factor, once fixed to its true value, on average leads to the greatest reduction in the variance of an output. A key assumption is that a given factor can, through further research, be fixed to some point on its domain. In general, this is an optimistic assumption, which can lead to inappropriate resource allocation. This research develops an original method that apportions output variance as a function of the amount of variance reduction that can be achieved for a particular factor. This variance-based sensitivity index function provides a main effect sensitivity index for a given factor as a function of the amount of variance of that factor that can be reduced. An aggregate measure of which factors would on average cause the greatest reduction in output variance given future research is also defined and assumes the portion of a particular factors variance that can be reduced is a random variable. An average main effect sensitivity index is then calculated by taking the mean of the variance-based sensitivity index function. A key aspect of the method is that the analysis is performed directly on the samples that were generated during a global sensitivity analysis using rejection sampling. The method is demonstrated on the Ishigami function and an additive function, where the rankings for future research are shown to be different than those of a traditional global sensitivity analysis. - Highlights: ► A sensitivity index function that apportions output variance as a function of the variance reduction that can be achieved for a given factor. ► A main effect sensitivity index that assumes the portion of a particular factor's variance that can be reduced is a random variable. ► The proposed indices are estimated directly from samples generated during a global sensitivity analysis using rejection sampling. ► Methods are demonstrated on the Ishigami function and an additive function. ► The demonstrations reveal main effect rankings that are different than those of a traditional global sensitivity analysis.
Primary Subject
Source
SAMO 2010: 6. international conference on sensitivity analysis of model output; Milan (Italy); 19-22 Sep 2010; S0951-8320(11)00171-2; Available from http://dx.doi.org/10.1016/j.ress.2011.08.007; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Baelmans, M.; Blommaert, M.; Dekeyser, W.; Van Oevelen, T., E-mail: martine.baelmans@kuleuven.be2017
AbstractAbstract
[en] Plasma edge transport codes play a key role in the design of future divertor concepts. Their long simulation times in combination with a large number of control parameters turn the design into a challenging task. In aerodynamics and structural mechanics, adjoint-based optimization techniques have proven successful to tackle similar design challenges. This paper provides an overview of achievements and remaining challenges with these techniques for complex divertor design. It is shown how these developments pave the way for fast sensitivity analysis and improved design from different perspectives. (paper)
Primary Subject
Source
Available from http://dx.doi.org/10.1088/1741-4326/57/3/036022; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Rodnizki, J.; Horvits, Z.; Ben Aliz, Y.; Grin, A.; Weissman, L.
27. Conference of the Nuclear Societies in Israel. Program and Papers2014
27. Conference of the Nuclear Societies in Israel. Program and Papers2014
AbstractAbstract
[en] The measured sensitivity of the cavity was evaluated and it is full consistent with the measured values. It was explored that the tuning system (the fog structure) has a significant contribution to the cavity sensitivity. By using ribs or by modifying the rigidity of the fog we may reduce the HWR sensitivity. During cool down and warming up we have to analyze the stresses on the HWR to avoid plastic deformation to the HWR since the Niobium yield is an order of magnitude lower in room temperature
Primary Subject
Source
Nuclear Societies in Israel (Israel); Ben Gurion University of the Negev (Israel); Nuclear Research Center Negev (Israel); Rambam Medical Center (Israel); Soreq Nuclear Research Center (Israel); 367 p; Feb 2014; 4 p; 27. Conference of the Nuclear Societies in Israel; Dead Sea (Israel); 11-13 Feb 2014
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue
Ge, Qiao; Menendez, Monica, E-mail: qiao.ge@ivt.baug.ethz.ch, E-mail: monica.menendez@ivt.baug.ethz.ch2017
AbstractAbstract
[en] Global Sensitivity Analysis (GSA) can help modelers to better understand the model and manage the uncertainty. However, when the model itself is rather sophisticated, especially when dependence exists among model inputs, it could be difficult or even unfeasible to perform quantitative GSA directly. In this paper, a non-parametric approach is proposed for screening model inputs. It extends the classic Elementary Effects (i.e., Morris) method, which is widely used for screening independent inputs, to enable the screening of dependent model inputs. The performance of the proposed method is tested with three numerical experiments, and the results are cross-compared with those from the variance-based GSA. It is found that the proposed method can properly identify the influential and non-influential inputs from a complex model with several independent and dependent inputs. Furthermore, compared with the variance-based GSA, the proposed screening method only needs a few model runs, while the screening accuracy is well maintained. Therefore, it can be regarded as a practical tool for the initial GSA of high dimensional and computationally expensive models with dependent inputs. - Highlights: • A non-parametric and qualitative global SA approach for screening dependent model inputs is developed. • The independent elementary effects and the full elementary effects are proposed for input screening. • The proposed approach produces similar screening results as the variance-based GSA. • The screening approach takes over 25 times less computational cost than the variance-based GSA. • An efficient screening tool for high-dimensional and computationally expensive models with dependent inputs.
Primary Subject
Source
S0951-8320(17)30062-5; Available from http://dx.doi.org/10.1016/j.ress.2017.01.010; Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | 3 | Next |