Filters
Results 1 - 10 of 1153
Results 1 - 10 of 1153.
Search took: 0.03 seconds
Sort by: date | relevance |
Gouberman, A; Leschke, K, E-mail: alexander.gouberman@unibw.de, E-mail: k.leschke@mcs.le.ac.uk2009
AbstractAbstract
[en] Using the (generalized) Darboux transformation in the case of the Clifford torus, we construct for all Pythagorean triples (p,q,n) ELEMENT OF z3 a CP3-family of Willmore tori in S4 with Willmore energy 2(nπ)2.
Primary Subject
Source
2. workshop on nonlinearity and geometry; Bedlewo (Poland); 13-19 Apr 2008; S1751-8113(09)04209-7; Available from http://dx.doi.org/10.1088/1751-8113/42/40/404010; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
Journal of Physics. A, Mathematical and Theoretical (Online); ISSN 1751-8121;
; v. 42(40); [12 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Bonanos, P.
Princeton Univ., N.J. (USA). Plasma Physics Lab1971
Princeton Univ., N.J. (USA). Plasma Physics Lab1971
AbstractAbstract
No abstract available
Primary Subject
Source
1971; 6 p; Nuclear science symposium; San Francisco, Calif; 3 Nov 1971
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Wang, Lei; Yang, Xiao-Song, E-mail: yangxs@hust.edu.cn2015
AbstractAbstract
[en] This letter restudies the Nosé-Hoover oscillator. Some new averagely conservative regions are found, each of which is filled with different sequences of nested tori with various knot types. Especially, the dynamical behaviors near the border of “chaotic region” and conservative regions are studied showing that there exist more complicated and thinner invariant tori around the boundaries of conservative regions bounded by tori. Our results suggest an infinite number of island chains in a “chaotic sea” for the Nosé-Hoover oscillator
Primary Subject
Source
(c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] This paper is devoted to the classical Knotting Problem: for a given manifold N and number m describe the set of isotopy classes of embeddings N→Sm. We study the specific case of knotted tori, that is, the embeddings Sp×Sq→Sm. The classification of knotted tori up to isotopy in the metastable dimension range m ≥ p + 3/2q + 2, p≤q, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension. Bibliography: 35 titles.
Primary Subject
Source
Available from http://dx.doi.org/10.1070/SM2012v203n11ABEH004281; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Sbornik. Mathematics; ISSN 1064-5616;
; v. 203(11); p. 1654-1681

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Primary Subject
Source
Available from http://dx.doi.org/10.1070/RM2007v062n05ABEH004468; Abstract only; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Primary Subject
Source
Available from http://dx.doi.org/10.1070/RM2004v059n03ABEH000743; Abstract only; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Primary Subject
Source
Jan 1973; 31 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] We study the variation of the Mumford quotient by the action of a maximal torus T on a flag variety G/B as we change the projective embedding G/B→P(V(χ)), where the T-linearization is induced by the standard G-linearization. To do this, we describe the linear spans of the supports of the semistable orbits. This enables us to calculate the rank of the Picard group of the quotient (G/B)ss//T in the case when G contains no simple components of type An
Primary Subject
Source
Available from http://dx.doi.org/10.1070/IM2007v071n06ABEH002383; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Izvestiya. Mathematics; ISSN 1064-5632;
; v. 71(6); p. 1105-1122

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Bunimovich, Leonid A, E-mail: bunimovh@math.gatech.edu2008
AbstractAbstract
[en] We discuss several open problems in the theory of Hamiltonian systems. They are all related to the Hamiltonian systems with divided phase space, where Kolmogorov–Arnold–Moser tori coexist with ergodic components of positive measure. (open problem)
Primary Subject
Source
S0951-7715(08)66916-9; Available from http://dx.doi.org/10.1088/0951-7715/21/2/T01; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Nonlinearity (Print); ISSN 0951-7715;
; v. 21(2); p. T13-T17

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Biryukov, O.V.; Vishnevetskij, V.N.; Durnov, V.A.; Ivakhnenko, S.F.; Kitaevskij, L.Kh.; Samojlov, V.P.; Sivinskij, Yu.P.; Tkhoryak, F.A.
Nuclear science and engineering problems1973
Nuclear science and engineering problems1973
AbstractAbstract
No abstract available
Original Title
Stanok dlya silovoj namotki stekloplastikovykh karkasov vysokoj nesushchej sposobnosti na metallicheskikh torovykh kamerakh stellaratorov
Primary Subject
Source
AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst; Proceedings Series; no. 1(1) p. 42-44; 1973; Engineering problems of experimental physics; Kharkov, Ukrainian SSR; 14 Dec 1972
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | 3 | Next |