Published June 1988
| Version v1
Report
Open
An algorithm to compute the square root of 3x3 positive definite matrix
Description
An efficient closed form to compute the square root of a 3 x 3 positive definite matrix is presented. The derivation employs the Cayley-Hamilton theorem avoiding calculation of eigenvectors. We show that evaluation of one eigenvalue of the square root matrix is needed and can not be circumvented. The algorithm is robust and efficient. (author)
Availability note (English)
MF available from INIS under the Report Number.Abstract (Portuguese)
Uma forma fechada eficiente para computar a raiz quadrada de uma matriz positiva definida 3 x 3 e apresentada. A derivacao emprega o teorema de Cayley-Hamilton evitando o calculo de autovetores. Nos mostramos que a avaliacao de um autovalor da matriz raiz quadrada e necessaria e nao pode ser evitado. O algoritmo e robusto e eficiente. (autor)Files
20064555.pdf
Files
(279.5 kB)
Name | Size | Download all |
---|---|---|
md5:d9d726f629593692dc6784a9c9509ef7
|
279.5 kB | Preview Download |
Additional details
Publishing Information
- Imprint Pagination
- 26 p.
- Report number
- LNCC--022/88
INIS
- Country of Publication
- Brazil
- Country of Input or Organization
- Brazil
- INIS RN
- 20064555
- Subject category
- S71: CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS;
- Descriptors DEI
- ALGORITHMS; EIGENVALUES; MATHEMATICAL OPERATORS; MATRICES