Published June 1988 | Version v1
Report Open

An algorithm to compute the square root of 3x3 positive definite matrix

Description

An efficient closed form to compute the square root of a 3 x 3 positive definite matrix is presented. The derivation employs the Cayley-Hamilton theorem avoiding calculation of eigenvectors. We show that evaluation of one eigenvalue of the square root matrix is needed and can not be circumvented. The algorithm is robust and efficient. (author)

Availability note (English)

MF available from INIS under the Report Number.

Abstract (Portuguese)

Uma forma fechada eficiente para computar a raiz quadrada de uma matriz positiva definida 3 x 3 e apresentada. A derivacao emprega o teorema de Cayley-Hamilton evitando o calculo de autovetores. Nos mostramos que a avaliacao de um autovalor da matriz raiz quadrada e necessaria e nao pode ser evitado. O algoritmo e robusto e eficiente. (autor)

Files

20064555.pdf

Files (279.5 kB)

Name Size Download all
md5:d9d726f629593692dc6784a9c9509ef7
279.5 kB Preview Download

Additional details

Publishing Information

Imprint Pagination
26 p.
Report number
LNCC--022/88

INIS

Country of Publication
Brazil
Country of Input or Organization
Brazil
INIS RN
20064555
Subject category
S71: CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS;
Descriptors DEI
ALGORITHMS; EIGENVALUES; MATHEMATICAL OPERATORS; MATRICES