Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.014 seconds
AbstractAbstract
[en] A method is presented for representing mild geometrically nonlinear static behavior of thin-type structures, within the finite element method, in terms of linear elastic and linear (bifurcation) buckling analysis results for structural loading or geometry situations which violate the idealized restrictive (perfect) interpretation of linear behavior up to bifurcation. Formulation of the finite element displacement method for material linearity but retaining the full, nonlinear strain-displacement relations (geometric nonlinearity) leads to highly nonlinear equations relating the unknown nodal generalized displacements r to the applied loading R. Restriction to small strains alone does not linearize these equations for thin-type structural configurations; only explicitly requiring that all products of displacement gadients be much smaller than the gadients themselves reduces the equations to the familiar linear form Ksub(e)r=R, where Ksub(e) is the elastic stiffness. Assuming then that the solutions r of the linear equations also satisfies the full nonlinear equations (i.e., that the above explicit requirement is satisfied), a second solution to the full equations can be sought for a one-parameter loading path lambdaR, leading to the well-known linear (bifurcation) buckling eigenvalue problem Ksub(e)X=-Ksub(g)XΛ where Ksub(g) is the geometric stiffness, X the matrix whose columns are the eigenvectors (so-called buckling mode shapes) and Λ is a diagonal matrix of eigenvalues lambda(i) (so-called load scale factors). From the viewpoint of the practising structural analyst using finite element software, the method presented here gives broader and deeper significance to an existing linear (bifurcation) buckling analysis capability, in that the additional computations are minimal beyond those already required for a linear static and buckling analysis, and should be easily performable within any well-designed general purpose finite element system
Primary Subject
Secondary Subject
Source
v. M; 1977; M 4/2, 12 p; 4. International conference on structural mechanics in reactor technology; San Francisco, Calif., USA; 15 - 19 Aug 1977
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue