Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.021 seconds
AbstractAbstract
[en] The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, 242Bk, was produced with a cross-section of approximately 10 μb in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, αxn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,αxn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z1 + Z2 = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,αxn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of 228Pu, 230Pu, 232Cm, or 238Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes
Primary Subject
Secondary Subject
Source
Apr 1978; 99 p; Available from NTIS., PC A05/MF A01
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue