[en] Experiments have been performed to determine the length for convergence or closure of a vertical, hollow annular water jet due to the action of surface tension forces. The data agree well with theoretical predictions up to a velocity of about 3 m/s. At higher velocities, the convergence lengths are less than predicted and this is attributed to the jet acting as an ejector pump and thereby reducing the air pressure inside the annulus to slightly sub-atmospheric values. The stability of such a jet is also discussed in the light of the fact that no hydrodynamic instabilities have been observed to date. Finally the results of a series of experiments on the flow spreading or splitting due to the presence of wedge-shaped obstacles in the path of the annular jet flow are described