Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.013 seconds
AbstractAbstract
[en] First of all the simple case of an integral of one variable (zero-dimensional model) is examined to illustrate the methods and concepts used. A system n quantum oscillators 0(n) (spherical model) is then studied. A theory of perturbations around the saddle point dominating the functional integral is developed (theory of perturbations around the instanton). The fluctuation propagator is calculated explicitly. Some properties of the corresponding Feynman diagrams are also investigated. Methods are proposed to generalize the calculations to more complicated potentials. As an example of application the calculations of the first correction to the Lipatovian term are given for the spherical model
[fr]
On etudie tout d'abord le cas simple d'une integrale d'une variable (modele zero dimensionnel), a titre d'illustration des methodes et concepts utilises. On etudie ensuite un systeme de n oscillateurs quantiques 0(n) (modele spherique). On developpe une theorie des perturbations autour du col dominant l'integrale fonctionnelle (theorie des perturbations autour de l'instanton). Le propagateur des fluctuations est calcule explicitement. On etudie egalement quelques proprietes des diagrammes de Feynman correspondants. On propose des methodes permettant de generaliser le calcul a des potentiels plus compliques. A titre d'application, on donne les calculs de la premiere correction au terme lipatovien pour le modele spheriqueOriginal Title
Estimation des grands ordres de la theorie des perturbations en mecanique quantique
Primary Subject
Source
1978; 92 p; These (3e Cycle).
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue