Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
AbstractAbstract
[en] A quantitative comparison of multiple-photon absorption (MPA) and dissociation (MPD) has been performed for experiments with a number of different polyatomic molecules. Appropriate normalization techniques for the absorption and dissociation parameters are formulated to account for the different conditions of the experiment and the molecular parameters. This procedure in a first approximation, accounts for the effects of independent variables such as gas pressure, optical bandwidth, optical pulse duration, excitation frequency, spectral width of the optical absorption band, absorption strength of the transition, bond strength, and the density of states in the molecule. The theoretical description of the dynamics of the absorbing ground state is considered and used to provide the rationale for the normalization procedure. The results of this analysis indicate that the functional dependence of the number of photons absorbed per molecule with fluence is qualitatively the same for the most molecules. Similarly, the probability for dissociation of most molecules can be related to the density of vibrational states, the bond strength, the number of photons absorbed per molecule, and the width of the absorbing transition. The functional relationships derived for MPA and MPD can be related to several theoretical aspects of the optical interaction process. In particular, the implications for the basic absorption mechanisms and the distribution of vibrational energy in the molecule will be addressed
Primary Subject
Source
1980; 27 p; 2. international conference on multiphoton processes; Budapest, Hungary; 14 - 18 Apr 1980; CONF-800432--1; Available from NTIS., PC A03/MF A01
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue