Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] A procedure ('break-collapse method') is introduced which considerably simplifies the calculation of two - or multirooted clusters like those commonly appearing in real space renormalization group (RG) treatments of bond-percolation, and pure and random Ising and Potts problems. The method is illustrated through two applications for the q-state Potts ferromagnet. The first of them concerns a RG calculation of the critical exponent ν for the isotropic square lattice: numerical consistence is obtained (particularly for q→0) with den Nijs conjecture. The second application is a compact reformulation of the standard star-triangle and duality transformations which provide the exact critical temperature for the anisotropic triangular and honeycomb lattices. (Author)
[pt]
Introduz-se um procedimento ('metodo de quebra de colapso') que simplifica consideravelmente o calculo de (dois-ou mult-iraizados) clusters como aqueles que aparecem comumente em tratamentos de grupo de renormalizacao (GR) do espaco real de percolacao de ligacao e problemas de Ising puro e ao acaso e de Potts. Ilustra-se o metodo atraves de duas aplicacoes para o ferromagneto de Potts do estado q. O primeiro deles diz respeito a um calculo de GR do expoente critico ν para a rede quadrada isotropica: obtem-se uma consistencia numerica (particularmente para q → 0) com a conjectura de den Nijs. A segunda aplicacao e uma reformulacao compacta do triangulo estrela padrao e transformacoes de dualidade que dao a temperadura critica exata para as redes triangulares anisotropicas e em forma de favos. (L.C.)Source
1981; 19 p
Record Type
Report
Literature Type
Numerical Data
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue