[en] An investigation of two-dimensional exactly and completely integrable dynamical systems associated with the local part of an arbitrary Lie algebra g whose grading is consistent with an arbitrary integral embedding of 3d-subalgebra in g has been carried out. The corresponding systems of nonlinear partial differential equations of the second order h been constructed in an explicit form and their genral solutions in the sense of a Goursat problem have been obtained. A method for the construction of a wide class of infinite-dimensional Lie algebras of finite growth has been proposed