Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
Rasmuson, A.; Neretnieks, I.
Svensk Kaernbraenslefoersoerjning AB, Stockholm1982
Svensk Kaernbraenslefoersoerjning AB, Stockholm1982
AbstractAbstract
[en] Diffusion into the rock matrix has a large impact on the migration of radionuclides in the geosphere. The aim of the present study is to investigate the effect of this mechanism on radionuclide chain migration. For this purpose a previously used numerical code TRUMP is extended to incorporate chain decay. The algorithm is also changed to directly include the decay terms. The extended version was given the acronym TRUCHN. Numerical solutions from TRUCHN are compared with the analytical solutions developed by Lester et al. A good agreement is obtained. To illustrate the impact of matrix diffusion on the arrival times to the biosphere of the members of a radionuclide chain a number of numerical calculations were done for the two chains U-238 to Th-230 to Ra-226 and Pu-239 to U-235 to Pa-231. The resulting curves are compared with the results for surface sorption (penetration depth 10-4 m) and volume sorption (complete penetration) obtained with the computer program GETOUT. The difference in first arrival times are very large. The arrival times in the surface and volume sorption cases, differ with as much as four orders of magnitude. The corresponding times for instationary diffusion are located between these extreme values. A daughter nuclide which is strongly sorbed may be heavily retarded if it is produced far inside the rock matrix and has a long way to diffuse before it reaches the flowing water. This effect is investigated, by considering diffusion only of a radionuclide chain, with analytical and numerical (TRUCHN) methods. Finally, in connection with the reconcentration effect, some means of describing the outflow of a daughter nuclide in terms of the outflow of its parent nuclide are proposed. (Authors)
Primary Subject
Secondary Subject
Source
Apr 1982; 69 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue