Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
AbstractAbstract
[en] permian evaporites in the Ochoan Castile, Salado, and Rustler Formations in the Delaware Basin of southeast New Mexico and west Texas have been subjected to various degrees of dissolution (notably of halite and gypsum) through geologic time. Eastward tilting of the Delaware Basin has resulted in the exhumation and erosion of Ochoan rocks in the western part of the basin. Waters in the Capitan, Rustler, Castile, and Bell Canyon Formations have previously been proposed as agents or consequences of evaporite dissolution according to four principal models: solution-and-fill, phreatic dissolution, brine density flow, and stratabound dissolutin (along bedding planes). Several geomorphological features of positive and negative relief have previously been cited as indicators of evaporite dissolution. Brine density flow has been used to explain the selective dissolution of certain evaporite horizons during the late Cenozoic. A review of available geological data has revealed that: Halite deposition was probably not so extensive as formerly believed. Waters with potential to dissolve evaporites are in the Rustler and Capitan, but not in the Bell Canyon, Salado mine seeps, or the Castile brine reservoirs. Brine density flow has not been active in removing most of the missing halite, nor are point-source dissolution features likely to have their roots at the Bell Canyon. Major evaporite dissolution has not been confined to the late Cenozoic, but much of it took place during the Permian, Triassic, Jurassic, and Tertiary periods. The Bell Canyon Formation has been a sink for dissolution-derived brine
Primary Subject
Secondary Subject
Source
Mar 1983; 92 p; Available from NTIS, PC A05/MF A01; 1 as DE83011029
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue