Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.032 seconds
AbstractAbstract
[en] The duality transformation of the vacuum expectation value of the operator which creates magnetic vortices (the 't Hooft loop operator in the Higgs phase) is performed in the radial gauge (xsub(μ)Asub(μ)sup(a)(x)=0). It is found that in the weak coupling region (small g) of a pure Yang-Mills theory the dual operator creates electric vortices whose strength is 1/g. The theory is self dual in this region, and the effective coupling of the dual Lagrangian is 1/g. Thus the above duality transformation reduces to electric-magnetic duality where the electric field in the 't Hooft loop operator transforms into a magnetic field in the dual operator. In a spontaneously broken gauge theory these results are valid only within the region where the vortices (or the monopoles) are concentrated, or in directions of the algebra space of unbroken symmetry, as self duality holds only for this subset of fields. In the strong coupling region a strong coupling expansion in powers of 1/g is suggested. (author)
Primary Subject
Source
Mar 1982; 38 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue