Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] Our research on the motion of electrons in insulating liquids has had both a theoretical and an experimental facet. The former was necessary to guide the latter. The experimental aims of the program were to develop a new technique to measure the Hall mobility of injected electrons in an insulating liquid and to develop a measurement of the density of localized states within a few kT from the conduction band edge. On the basis of our theoretical work, we concluded that these states are essential for the understanding of phenomena involved in large part of the observations carried out in studying the motion of electrons in liquids. The measurement of the hall mobility of electrons injected in liquids was very successful. Results from these experiments confirmed the expected importance of localized states in the liquid. We were however, unable to directly measure the density of localized states below the conduction band edge of rare gasses. Our theoretical work was able to explain the apparent saturation of the time of flight (TOF) velocity in rare gasses, the increase of the saturation TOF velocity by the addition of impurities to rare gasses as well as the electric field induced variation of the probability of capture of an electron by an impurity. An estimate of the average energy of localized states below the conduction band edge was calculated. A novel method for the measurement of the effective mass of electrons injected in an insulating liquid was proposed. Finally an adaptation of the theory of the mobility of electrons scattered by phonons that has been used for solids was adapted to liquids
Primary Subject
Source
Jun 1984; 11 p; Available from NTIS, PC A02/MF A01; 1 as DE84013609
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue