Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] This report describes a study of the Swiss disposal concept used in 'Project Gewaehr 1985' safety analysis. The main components of the near-field of a high level waste repository are the waste glass matrix, the thick steel canister and the surrounding backfill of compressed bentonite. In this report it is concluded that mineralogical alteration of the backfill will be negligibly small over the million year period considered. Its physical and chemical properties can thus be relied on for such a period. The canister will retain its integrity for > 10/sup 3/ y and thereafter will act as an Eh/pH buffer. The near-field buffers ensure more alkaline and reducing conditions than in the far-field. Complete degradation of the glass matrix will take > 10/sup 5/ years and nuclide release will be limited by their congruent dissolution although it may be further constrained by low solubility. Diffusion of dissolved nuclides through the backfill is so slow that many species decay to insignificance within it. The large uptake capacity of the bentonite also significantly extends the release duration for longer lived, non-solubility limited nuclides thus decreasing output mixima. Possible perturbing factors such as radiolysis and hydrogen production by anoxic corrosion are of little importance but modelling of speciation/solubility in the near-field and, in particular, colloid formation and mobility are identified as areas in which more work is required. Although the main analysis aims to err on the side of conservatism, the extent of such pessimism is assessed in a 'realistic' appraisal of the near-field. This suggests that the engineered barriers will prevent any radiologically significant releases over periods in excess of a million years which would strengthen their role in the multiple barrier safety concept. (author)
Primary Subject
Secondary Subject
Source
Oct 1985; 94 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue