Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
AbstractAbstract
[en] The diffusion-advection equation has been established by a deterministic method form Liouville's fundamental equation and by a stochastic method assuming the fundamental process of diffusion-advection to a continuous and homogeneous MARKOV's process. Several methods for solving the diffusion-advection equation are explained: 1) for an infinite and homogeneous medium, 2) for a finite and homogeneous medium. Finally, a generalized random walk solving method derived from the stochastic form of the differential equation of diffusion-advection is suggested. This method is also called: ''Monte-Carlo method''. In the last part, several generalized boundary condition effects are calculated
[fr]
Dans ce rapport, l'equation de la diffusion-convection est etablie de facon deterministe a partir de l'equation de Liouville, puis etablie de facon stochastique en assimilant le processus fondamental de la diffusion-convection a un processus de Markov continu et homogene. Quelques methodes de resolution de l'equation de la diffusion-convection sont proposees en milieu infini et homogene, puis en milieu fini et homogene. Enfin, une methode generale de resolution en milieu heterogene est proposee a partir de la formulation stochastique par une methode de marche au hasard, appelee aussi methode de ''Monte-Carlo''. Dans le dernier chapitre, diverses conditions aux limites generalisees sont exposeesOriginal Title
Formulations deterministe et stochastique de l'equation de la diffusion-convection: resolution de sa forme bidimensionnelle par la methode de Monte-Carlo
Primary Subject
Secondary Subject
Source
Aug 1986; 80 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue