Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.023 seconds
AbstractAbstract
[en] Transient burnout characteristics of a fuel rod under a rapid flow reduction condition of a light water reactor were experimentally and analytically studied. The test sections were uniformly heated vertical tube and annulus with the heated length of 800 mm. Test pressures ranged 0.5 ∼ 3.9 MPa, heat fluxes 2,160 ∼ 3,860 KW/m2, and flow reduction rates 0.44 ∼ 770 %/s. The local flow condition during flow reduction transients were calculated with a separate flow model. The two-fluid/three-field thermal-hydraulic code, COBRA/TRAC, was also used to investigate the liquid film behavior on the heated surface. The major results obtained in the present study are as follows: The onset of burnout under a rapid flow reduction condition was caused by a liquid film dryout on the heated surface. With increasing flow reduction rate beyond a threshold, the burnout mass velocity at the inlet became lower than the steady-state burnout mass velocity. This is explained by the fact that the vapor flow rate continues to increase due to the delay of boiling boundary movement and the resultant high vapor velocity sustains the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. The ratio of inlet burnout mass velocities between flow reduction transient and steady-state became smaller with increasing system pressure because of the lower vapor velocity due to the lower vapor specific volume. Flow reduction burnout occurred when the outlet quality agreed with the steady-state burnout quality within 10 %, suggesting that the local condition burnout model can be used for flow reduction transients. Based on this model, a method to predict the time to burnout under a flow reduction condition in a uniformly heated tube was developed. The calculated times to burnout agreed well with some experimental results obtained by the Author, Cumo et al., and Moxon et al. (author)
Primary Subject
Secondary Subject
Source
Sep 1986; 102 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue