Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.021 seconds
Slough, G.; Giambattista, B.; Johnson, A.; McNairy, W.W.; Coleman, R.V.
Virginia Univ., Charlottesville (USA). Dept. of Physics1988
Virginia Univ., Charlottesville (USA). Dept. of Physics1988
AbstractAbstract
[en] The layer structure dichalcogenide materials TaS2 and TaSe2 grow in several different phases depending on the coordination between the Ta and chalcogenide atoms and the number of three layer sandwiches per unit cell. The 1T phase has octahedral coordination between the Ta and chalcogenide atoms and has one three layer sandwich per unit cell. The high temperature Fermi surfaces (FSs) of the 1T phase Ta based materials exhibit a favorable nesting condition and undergo a charge-density-wave (CDW) transition at temperatures well above room temperature. At low temperatures the CDWs form a √13 /ovr string/a /times/ √13 a commensurate superlattice. STM scans on the 1T phases confirm the presence of an extremely strong CDW modulation inducing z-deflections in the constant current mode of anomalously large values. 1T-VSe2 is also a member of the VB layer structure dichalcogenide group and band structure calculations show the high temperatures FS to be similar to that of 1T-TaSe2. However, sufficient differences exist such that the CDW formation is quite different. The CDW superlattice is observed to form only below room temperature and locks into a 4/ovr string/a /times/ 4/ovr string/a superlattice below /approximately/80K rather than the √13 /ovr string/a /times/ √13 /ovr string/a one observed in 1T-TaSe2. Based on electron and neutron diffraction results on stoichiometric 1T-VSe2 two phase transitions are detected, a second order transition at 110K and a first order transition at /approximately/80K. 20 figs
Secondary Subject
Source
1988; 45 p; Available from NTIS, PC A03/MF A01; 1 as DE89003001; Portions of this document are illegible in microfiche products.
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue