Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.023 seconds
AbstractAbstract
[en] Ion Bernstein wave experiments are carried out on the Alcator C tokamak to study wave excitation, propagation, absorption, and plasma heating due to wave power absorption. It is shown that ion Bernstein wave power is coupled into the plasma and follows the expected dispersion relation. The antenna loading is maximized when the hydrogen second harmonic layer is positioned just behind the antenna. Plasma heating results at three values of the toroidal magnetic field are presented. Central ion temperature increases of ΔT/sub i//Ti /approx lt/ 0.1 and density increases Δn/n < 1 are observed during rf power injection of up to 180kW at a frequency of 183.6 /times/ 106s/sup /minus/1/ for plasmas within the density range 0.6 /times/ 1020m/sup /minus/3/ ≤ /bar n//sub e/ ≤ 4 /times/ 1020m/sup /minus/3/ and magnetic fields 2.4 ≥ ω/Ω/sub H/ ≥ 1.1. The density increases is usually accompanied by an improvement in the global particle confinement time relative to the Ohmic value. The ion heating rate is measured to be ΔT/sub i//P/sub rf/ ≅ 2-4.5 eV/kW at low densities. At higher densities /bar n//sub e/ ≤ 1.5 /times/ 1020m/sup /minus/3/ the ion heating rate dramatically decreases. It is shown that the decrease in the ion heating rate can be explained by the combined effects of wave scattering through the edge turbulence and the decreasing on energy confinement of these discharges with density. The effect of observed edge turbulence is shown to cause a broadening of the rf power deposition profile with increasing density. It is shown that the inferred value of the Ohmic ion thermal conduction, when compared to the Chang-Hinton neoclassical prediction, exhibits an increasing anomaly with increasing plasma density
Primary Subject
Source
Sep 1988; 220 p; PFC/RR--88-14; Available from NTIS, PC A10/MF A01 - OSTI; 1 as DE89005034; Portions of this document are illegible in microfiche products.; Thesis (Ph.D.).
Record Type
Report
Literature Type
Thesis/Dissertation
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue