Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.013 seconds
AbstractAbstract
[en] A dynamic programming approach was used to optimize the poison distribution in the core of a nuclear power plant between reloading. This method was applied to a 500 M We PWR subject to two different fuel management policies. The beginning of a stage is marked by a fuel management decision. The state vector of the system is defined by the burnups in the three fuel zones of the core. The change of the state vector is computed in several time steps. A criticality conserving poison management pattern is chosen at the beginning of each step. The burnups at the end of a step are obtained by means of depletion calculations, assuming constant neutron distribution during the step. The violation of burnup and power peaking constraints during the step eliminates the corresponding end states. In the case of identical end states, all except that which produced the largest amount of energy, are eliminated. Among the several end states one is selected for the subsequent stage, when it is subjected to a fuel management decision. This selection is based on an optimally criterion previously chosen, such as: discharged fuel burnup maximization, energy generation cost minimization, etc. (author)
Original Title
Otimizacao do remanejamento de veneno de controle por programacao dinamica
Primary Subject
Source
1974; 86 p; Tese (M.Sc.).
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Report Number
Country of publication
LanguageLanguage
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue