Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
AbstractAbstract
[en] An advanced material technology requires data base on a wide variety of material behavior which need to be established experimentally. It may often happen that experiments are practically limited in terms of reproducibility or a range of test parameters. Statistical methods can be applied to understanding uncertainties in such a quantitative manner as required from the reliability point of view. Statistical assessment involves determinations of a most probable value and the maximum and/or minimum value as one-sided or two-sided confidence limit. A scatter of test data can be approximated by a theoretical distribution only if the goodness of fit satisfies a test criterion. Alternatively, nonparametric statistics (NPS) or distribution-free statistics can be applied. Mathematical procedures by NPS are well established for dealing with most reliability problems. They handle only order statistics of a sample. Mathematical formulas and some applications to engineering assessments are described. They include confidence limits of median, population coverage of sample, required minimum number of a sample, and confidence limits of fracture probability. These applications demonstrate that a nonparametric statistical estimation is useful in logical decision making in the case a large uncertainty exists. (author)
Primary Subject
Source
Japan Atomic Energy Research Inst., Tokyo (Japan); 676 p; Dec 1992; p. 414-420; 4. international symposium on advanced nuclear energy research; Mito (Japan); 5-7 Feb 1992
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue