Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.038 seconds
AbstractAbstract
[en] One version of the multichannel theory for electron-target scattering based on the Schwinger variational principle, the SMC method, requires the introduction of a projection parameter. The role of the projection parameter a is investigated and it is shown that the principal-value operator in the SMC equation is Hermitian regardless of the value of a as long as it is real and nonzero. In a basis that is properly orthonormalizable, the matrix representation of this operator is also Hermitian. The use of such basis is consistent with the Schwinger variational principle because the Lippmann-Schwinger equation automatically builds in the correct boundary conditions. Otherwise, an auxiliary condition needs to be introduced, and Takatsuka and McKoy's original value of a is one of the three possible ways to achieve Hermiticity. In all cases but one, a can be uncoupled from the Hermiticity condition and becomes a free parameter. An equation for a based on the variational stability of the scattering amplitude is derived; its solution has an interesting property that the scattering amplitude from a converged SMC calculation is independent of the choice of a even though the SMC operator itself is a-dependent. This property provides a sensitive test of the convergence of the calculation. For a static-exchange calculation, the convergence requirement only depends on the completeness of the one-electron basis, but for a general multichannel case, the a-invariance in the scattering amplitude requires both the one-electron basis and the N plus 1-electron basis to be complete. The role of a in the SMC equation and the convergence property are illustrated using two examples: e-CO elastic scattering in the static-exchange approximation, and a two-state treatment of the e-H2 Chi1Sigmag(+) yields b3Sigmau(+) excitation
Primary Subject
Source
Dec 1993; 83 p; NASA-CR--194774; NAS--1.26:194774; NCC2-492; Also available from CASI HC A05/MF A01
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue