Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C.
Los Alamos National Lab., NM (United States). Funding organisation: USDOE, Washington, DC (United States)1996
Los Alamos National Lab., NM (United States). Funding organisation: USDOE, Washington, DC (United States)1996
AbstractAbstract
[en] Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion
Primary Subject
Source
1996; 16 p; 16. International Atomic Energy Agency (IAEA) international conference on plasma physics and controlled nuclear fusion research; Montreal (Canada); 7-11 Oct 1996; CONF-961005--14; CONTRACT W-7405-ENG-36; ALSO AVAILABLE FROM OSTI AS DE97002445; NTIS; US GOVT. PRINTING OFFICE DEP
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue