Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.031 seconds
AbstractAbstract
[en] In-core thermal-hydraulics during a PWR reflood phase following a large-break LOCA are quite unique in comparison with two-phase flow which has been studied widely in previous researches, because the geometry of the flow path is complicated (bundle geometry) and water is at extremely low superficial velocity and almost under stagnant condition. Hence, some phenomena realized during a PWR reflood phase are not understood enough and appropriate analytical models have not been developed, although they are important in a viewpoint of reactor safety evaluation. Therefore, author investigated some phenomena specified as important issues for quantitative prediction, i.e. (1) void fraction in a bundle during a PWR reflood phase, (2) effect of radial core power profile on reflood behavior, (3) effect of combined emergency core coolant injection on reflood behavior, and (4) the core separation into two thermal-hydraulically different regions and the in-core flow circulation behavior observed during a combined injection PWR reflood phase. Further, author made analytical models for these specified issues, and succeeded to predict reflood behaviors at representative types of PWRs, i.e.cold leg injection PWRs and Combined injection PWRs, in good accuracy. Above results were incorporated into REFLA code which is developed at JAERI, and they improved accuracy in prediction and enlarged applicability of the code. In the present study, models were intended to be utilized in a practical use, and hence these models are simplified ones. However, physical understanding on the specified issues in the present study is basic and principal for reflood behavior, and then it is considered to be used in a future advanced code development and improvement. (author). 110 refs
Primary Subject
Source
Oct 1998; 233 p
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue