Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
AbstractAbstract
[en] Improvements in spin-forming capabilities through upgrades to a metrology and machine control system and advances in numerical simulation techniques were studied in a two year project funded by Laboratory Directed Research and Development (LDRD) at Lawrence Livermore National Laboratory. Numerical analyses were benchmarked with spin-forming experiments and computational speeds increased sufficiently to now permit actual part forming simulations. Extensive modeling activities examined the simulation speeds and capabilities of several metal forming computer codes for modeling flat plate and cylindrical spin-forming geometries. Shape memory research created the first numerical model to describe this highly unusual deformation behavior in Uranium alloys. A spin-forming metrology assessment led to sensor and data acquisition improvements that will facilitate future process accuracy enhancements, such as a metrology frame. Finally, software improvements (SmartCAM) to the manufacturing process numerically integrate the part models to the spin-forming process and to computational simulations
Primary Subject
Source
10 Mar 1998; 23 p; ERD--96-005; CONTRACT W-7405-ENG-48; ALSO AVAILABLE FROM OSTI AS DE98057742; NTIS; US GOVT. PRINTING OFFICE DEP
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue