Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.02 seconds
AbstractAbstract
[en] The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundred to several thousand) high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high-current-density, low-critical-temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (lecture 1), we briefly recall the origins of superconductivity and we review the parameters of existing superconducting particle accelerators (lecture 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb3Sn) and we explain in details the manufacturing of NbTi wires and cables (lecture 3). We also present the difficulties of processing and insulating Nb3Sn conductors, which so far have limited the use of this material in spite of its superior performances. We continue by discussing the two dimensional current distributions which are the most appropriate for generating pure dipole and quadrupole fields and we explain how these ideal distributions can be approximated by so called cosθ and cos 2θ coil designs (lecture 4). We also present a few alternative designs which are being investigated and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that are used in existing accelerator magnets (lecture 5) and we describe how the magnets are assembled (lecture 6). Some of the toughest requirements on the performance of accelerator magnets are related to field quality Lecture 7 summarizes the different sources of field errors (lecture 7). We follow by a brief overview of the cooling schemes which have been implemented in the various accelerator rings and we discuss the issues related to quench performance (lecture 8). Finally, we detail the quench protection schemes which are needed to ensure safe operations of the magnets (lecture 9). (author)
Secondary Subject
Source
Sep 1999; (v.A,B,C) [1299 p.]; 15 refs.
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue