Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
AbstractAbstract
[en] In the sodium cooled liquid metal reactors, the design limit are imposed on the maximum temperatures of claddings and fuel pins. Thus an accurate prediction of core coolant/fuel temperature distribution is essential to the LMR core thermal-hydraulic design. The detailed subchannel thermal-hydraulic analysis code MATRA-LMR (Multichannel Analyzer for Steady States and Transients in Rod Arrays for Liquid Metal Reactors) is being developed for KALIMER core design and analysis, based on COBRA-IV-i and MATRA. The major modifications and improvements implemented into MATRA-LMR are as follows: a) nonuniform axial noding capability, b) sodium properties calculation subprogram, c) sodium coolant heat transfer correlations, and d) most recent pressure drop correlations, such as Novendstern, Chiu-Rohsenow-Todreas and Cheng-Todreas. To assess the development status of this code, the benchmark calculations were performed with the ORNL 19 pin tests and EBR-II seven-assembly SLTHEN calculation results. The calculation results of MATRA-LMR for ORNL 19-pin assembly tests and EBR-II 91-pin experiments were compared to the measurements, and to SABRE4 and SLTHEN code calculation results, respectively. In this comparison, the differences are found among the three codes because of the pressure drop and the thermal mixing modellings. Finally, the major technical results of the conceptual design for the KALIMER 98.03 core have been compared with the calculations of MATRA-LMR, SABRE4 and SLTHEN codes. (author)
Primary Subject
Source
International Atomic Energy Agency, Vienna (Austria); 443 p; ISSN 1011-4289;
; Jun 2000; p. 207-222; Technical committee meeting on methods and codes for calculations of thermohydraulic parameters for fuel, absorber pins and assemblies of LMFR's with traditional and burner cores; Obninsk (Russian Federation); 27-31 Jul 1998; 16 refs, 15 figs, 3 tabs

Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue