Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
Kasinathan, N.; Vaidyanathan, G.; Chetal, S.C.; Bhoje, S.B.
Specialists' meeting on evaluation of decay heat removal by natural convection1993
Specialists' meeting on evaluation of decay heat removal by natural convection1993
AbstractAbstract
[en] PFBR is a 500 MWe, 1200 MWt pool type LMFBR. In order to assure reliable decay heat removal, four totally independent Safety Grade Decay Heat Removal Systems (SGDHRS) which removes heat directly from the hot pool, is provided. Each of the SGDHRS comprises of a hot pool dipped decay heat exchanger (DHX), a sodium - air heat exchanger (AHX) at a suitable elevation and associated piping and circuits. This paper brings out the step by step approach that have been taken to decide on the preliminary sizing of the SGDHRS components, and static and transient analysis to assess the adequacy of the Decay Heat Removal capacity of the SGDHRS during the worst of the foreseen design basis conditions. The maximum values the important safety related temperatures viz., clad hotspot, hot pool top surface, reactor inlet, fuel subassembly outlets etc., would reach, can be obtained only through a comprehensive transient analysis. In order to get quick and reasonably meaningful results, one dimensional thermal-hydraulics models for the core, hot and cold pools, IHX, DHX, AHX and various pipings were developed and a code DHDYN formulated. With this a total power failure situation followed by initiations of DHR half an hour later was studied and the results revealed the following: (i) clad hotspot temperature in the in-vessel stored spent fuel subassemblies could be held below 800 deg. C only if primary sodium flow through these subassemblies are increased up to three times the originally allocated flow in the design, (ii) hotpool top zone temperature reaches 572 deg. C, (iii) reactor inlet temperature reaches 482 deg. C, (iv) the hot pool top zone temperature cools down to 450 deg. C in about 25 h. Thus these results satisfactorily established the adequacy of the sizing and the capability of the SGDHRS. DHDYN code is also used to study the RAMONA water experiments conducted in Germany. Initial results available has brought out the conservative nature of the DHDYN predictions as compared to the experimental results. (author)
Primary Subject
Source
International Atomic Energy Agency, International Working Group on Fast Reactors, Vienna (Austria); 158 p; Feb 1993; p. 135-145; IAEA-IWGFR specialists' meeting on evaluation of decay heat removal by natural convection; Oarai, Ibaraki (Japan); 22-23 Feb 1993; 5 refs, 3 figs, 5 tabs
Record Type
Report
Literature Type
Conference; Numerical Data
Report Number
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue