Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.021 seconds
AbstractAbstract
[en] For appropriate understanding and/or prediction of the combustion behavior of sodium, working as liquid coolant in fast breeder reactors, in case of leakage accident, phenomenological analyses of the behavior must be also important along with conventional engineering approach. Following our previous study in the last year, the major objective of this experimental research is to elucidate the effects of the initial temperature and diameter of droplet, and of the air flow velocity on ignition process of a sodium droplet, by exposing a suspended droplet to the air flow at room-temperature. In the experiments, a high-temperature droplet suspended from the end of a fine stainless steel nozzle of the liquid sodium supply system was exposed to an upward air flow, and the ignition and succeeding combustion phenomena were observed by using high-speed color video recording system. In the preliminary study, the effects of lighting and image data processing on obtaining pictures suitable to analyses were investigated with the apparatus used in the previous study. After the experimental apparatus was modified partially in order to expose the unreacted droplet to the air flow more quickly, main experiments were performed in synthetic dry air or oxygen-nitrogen mixture of 21% oxygen. Good quality pictures of the phenomena achieved under good conditions were recorded even for a few cases. The details of the ignition process of a sodium droplet, including the aspects of the surface and light emission, were examined, and the effects of the air flow velocity were discussed. Since number of performed experimental runs was small, the effects of the initial droplet temperature were not examined. (author)
Primary Subject
Source
Oct 1999; 57 p; 13 figs., 9 refs.
Record Type
Report
Literature Type
Numerical Data
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue