Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
AbstractAbstract
[en] The probability that radioactive particles hit particular space patterns (e.g. cells in the squares of a count chamber net) and time intervals (e.g. radioactive particles hit a given area per time unit) follows the Poisson distribution. The mean is the only parameter from which all this distribution depends. A metrological base of counting the cells and radioactive particles is a property of the Poisson distribution assuming equality of a standard deviation to a root square of mean (property 1). The application of Poisson units in counting of blood formed elements and cultured cells was proposed by us (Russian Federation Patent No. 2126230). Poisson units relate to the means which make the property 1 valid. In a case of cells counting, the square of these units is equal to 1/10 of one of count chamber net where they count the cells. Thus one finds the means from the single cell count rate divided by 10. Finding the Poisson units when counting the radioactive particles should assume determination of a number of these particles sufficient to make equality 1 valid. To this end one should subdivide a time interval used in counting a single particle count rate into different number of equal portions (count numbers). Next one should pick out the count number ensuring the satisfaction of equality 1. Such a portion is taken as a Poisson unit in the radioactive particles count. If the flux of particles is controllable one should set up a count rate sufficient to make equality 1 valid. Operations with means obtained by with the use of Poisson units are performed on the base of approximation of the Poisson distribution by a normal one. (author)
Primary Subject
Source
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague (Czech Republic); International Radiation Physics Society (International Organisation without Location); 340 p; ISBN 80-01-02180-7;
; 2000; p. 90; 8. international symposium on radiation physics (ISRP-8); Prague (Czech Republic); 5-9 Jun 2000; Also available on CD-ROM, data in PDF format for the Acrobat Reader; contact: Professor L. Musilek, Faculty of Nuclear Sciences and Physical Engineering, Brehova ul., CZ-11519 Prague 1, e-mail: musilek@br.fjfi.cvut.cz. In addition, the file can be downloaded from the web site: www.fjfi.cvut.cz/ISRP-8.htm; The abstract in the publication is identical with that reproduced below

Record Type
Book
Literature Type
Conference
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue