[en] Wigner's classical theorem on symmetry transformations plays a fundamental role in quantum mechanics. It can be formulated, for example, in the following way: Every bijective transformation on the set L of all 1-dimensional subspaces of a Hilbert space H which preserves the angle between the elements of L is induced by either a unitary or an antiunitary operator on H. The aim of this paper is to extend Wigner's result from the 1-dimensional case to the case of n-dimensional subspaces of H with n element of N fixed. (orig.)