Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.023 seconds
Kamada, Masaki; Mori, Michiya; Sugawara, Kazuyoshi; Yamada, Yoko; Kurihara, Kazuteru; Shirasaka, Haruki; Nishiguchi, Takashi; Ando, Ritoku; Kamada, Keiichi
Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy2002
Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy2002
AbstractAbstract
[en] Automodulation of an intense relativistic electron beam was reexamined experimentally to obtain trains of subnanosecond electron bunches. Sufficient beam modulation with frequency larger than 1 GHz was expected for the trains of subnanosecond bunches. It was obtained when a short pulse electron beam with energy of 550 keV, current of 4 kA, pulse duration of 12 ns and current rise time of 2ns was injected to a series of four coaxial cavities with the length of 75 mm. However, only a poor modulation was observed when a long pulse electron beam of 700 keV, 4 kA, 175 ns with current rise time of 20 ns was injected to the same cavities. Transmission line theory as well PIC code simulation suggested that the round trip time for the electromagnetic wave in the cavity must be longer than the rise time of the beam current to obtain the high level current modulation. Therefore, we studied experimentally how the ratio between the beam current rise time and the length of the cavity affects on the level of current modulation. Single cavity experiments were carried out with the short pulse beam. Single cavity with the length of 75, 150 or 300 mm was utilized. The round trip times for 75 and 150 mm cavities are shorter than the current rise time of 2 ns. The experiments with a 75 or 150 mm cavity resulted in suppression of the modulation amplitude. In the case of a 300 mm cavity, the high level modulation was obtained. The simulation results showed good agreements with the experimental results. We employed a series of cavities with decreasing lengths to improve the current rise time. For the short pulse beam, the high level current 1 GHz modulation was obtained when two 75 mm cavities were set at the downstream side of cavities with lengths of 300 mm and 150 mm. (author)
Primary Subject
Source
Horioka, Kazuhiko (ed.); National Inst. for Fusion Science, Toki, Gifu (Japan); 236 p; Jun 2002; p. 141-150; Symposium on ''physics and applications of high energy density plasmas''; Toki, Gifu (Japan); 20-21 Dec 2001; 11 refs., 9 figs.
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue