Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] A self-consistent one-dimensional model was developed to study the effect of the electron energy distribution function (EEDF) on power deposition and plasma density profiles in a planar inductively coupled plasma (ICP) in the non-local regime (pressure ≤10 mTorr). The model consisted of three modules: (1) an EEDF module to compute the non-Maxwellian EEDF, (2) a non-local electron kinetics module to predict the non-local electron conductivity, radio frequency (RF) current, electric field and power deposition profiles in the non-uniform plasma, and (3) a heavy species transport module to solve for the ion density and velocity profiles as well as the metastable density. Results using the non-Maxwellian EEDF model were compared with predictions using a Maxwellian EEDF, under otherwise identical conditions. The RF electric field, current and power deposition profiles were different, especially at 1 mTorr, for which the electron effective mean-free-path was larger than the skin depth. The plasma density predicted by the Maxwellian EEDF was up to 93% larger for the conditions examined. Thus, the non-Maxwellian EEDF must be accounted for in modelling ICPs at very low pressures
Primary Subject
Source
S0963-0252(03)62087-6; Available online at http://stacks.iop.org/0963-0252/12/302/ps3302.pdf or at the Web site for the journal Plasma Sources Science and Technology (ISSN 1361-6595) http://www.iop.org/; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Plasma Sources Science and Technology; ISSN 0963-0252;
; v. 12(3); p. 302-312

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue