Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.014 seconds
AbstractAbstract
[en] The concept of fourth-order squeezing of the electromagnetic field is investigated in the fundamental mode in spontaneous and stimulated four- and six-wave mixing processes under the short-time approximation based on a fully quantum mechanical approach. The coupled Heisenberg equations of motion involving real and imaginary parts of the quadrature operators are established. The possibility of obtaining fourth-order squeezing is studied. The dependence of fourth-order squeezing on the number of photons is also investigated. It is shown that fourth-order squeezing, which is a higher-order squeezing, allows a much larger fractional noise reduction than lower-order squeezing. It is shown that squeezing is greater in a stimulated process than the corresponding squeezing in spontaneous interaction. The conditions for obtaining maximum and minimum squeezing are obtained. We have also established the non-classical nature of squeezed radiation using the Glauber-Sudarshan representation
Source
S1464-4266(03)55061-3; Available online at http://stacks.iop.org/1464-4266/5/158/ob3207.pdf or at the Web site for the Journal of Optics. B, Quantum and Semiclassical Optics (Print) (ISSN 1464-4266) http://www.iop.org/; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Journal of Optics. B, Quantum and Semiclassical Optics (Print); ISSN 1464-4266;
; v. 5(2); p. 158-163

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue